Studying the influence of livestock pressure on gully erosion in rangelands of SW Spain by means of the UAV+SfM workflow

Contenido principal del artículo

Álvaro Gómez Gutiérrez
Susanne Schnabel
Francisco Lavado Contador
José Juan de Sanjosé
Alan D. J. Atkinson
Manuel Pulido Fernández
Manuel Sánchez Fernández

Resumen

La erosión por cárcavas supone un proceso de degradación del suelo frecuente en los sistemas agrosilvopastoriles del SO español que ha sido poco estudiado. Se analizan aquí la viabilidad de uso de vehículos aéreos no tripulados (UAV) y la fotogrametría SfM para cartografiar cárcavas de fondo de valle en estos paisajes. Los resultados muestran precisión centimétrica. Se debaten las fortalezas y limitaciones de la metodología empleada. La cartografía resultante permitió cartografiar las formas erosivas a una escala excepcional. Todas las zonas de estudio mostraron evidencias de degradación.



Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Gómez Gutiérrez, Álvaro, Schnabel, S., Lavado Contador, F., de Sanjosé, J. J., Atkinson, A. D. J., Pulido Fernández, M., & Sánchez Fernández, M. (2018). Studying the influence of livestock pressure on gully erosion in rangelands of SW Spain by means of the UAV+SfM workflow. Boletín De La Asociación De Geógrafos Españoles, (78), 66-88. https://doi.org/10.21138/bage.2712

Bibliografía

Belsky, A. J., Matzke, A., & Uselman S. (1999). Survey of livestock influences on stream and riparian ecosystems in the western United States. Journal of Soil and Water Conservation, 54(1), 419–431.

Casalí, J., Loizu, J., Campo, M. A., De Santisteban, L. M., & Álvarez–Mozos, J. (2006). Accuracy of methods for field assessment of rill and ephemeral gully erosion. Catena, 67(2), 128–138. doi: http://dx.doi.org/10.1016/j.catena.2006.03.005

Castillo, C., Pérez, R., James, M. R., Quinton, N. J., Taguas, E. V., & Gómez, A. (2012). Comparing the accuracy of several field methods for measuring gully erosion. Soil Science Society of America Journal, 76(4), 1319–1332. doi: http://dx.doi.org/10.2136/sssaj2011.0390

Cook, K. L. (2017). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278, 195–208. doi: http://dx.doi.org/10.1016/j.geomorph.2016.11.009

Chaplot, V. (2013). Impact of terrain attributes, parent material and soil types on gully erosion. Geomorphology, 186, 1–11. doi: http://dx.doi.org/10.1016/j.geomorph.2012.10.031

Christian, P., & Davis, J. (2016). Hillslope gully photogeomorphology using structure-from-motion. Zeitschrift fur Geomorphologie, 60, 59–78. doi: http://dx.doi.org/10.1127/zfg_suppl/2016/00238

Ehiorobo, J. O., & Audu, H. A. P. (2012). Monitoring of gully erosion in an urban area using geoinformation technology. Journal of Emerging Trends in Engineering and Applied Sciences, 3(2), 270–275.

Ely, J. C., Graham, C., Barr, I. D., Rea, B. R., Spagnolo, M., & Evans, J. (2017). Using UAV acquired photography and structure from motion techniques for studying glacier landforms: application to the glacial flutes at Isfallsglaciären. Earth Surface Processes and Landforms, 42(6), 877–888. doi: http://dx.doi.org/10.1002/esp.4044

Evans, M., & Lindsay, J. (2010). High resolution quantification of gully erosion in upland peatlands at the landscape scale. Earth Surface Processes and Landforms, 35(8), 876–886. doi: http://dx.doi.org/10.1002/esp.1918

Fernández, T., Pérez, J. L., Cardenal, J., Gómez, J. M., Colomo, C., & Delgado, J. (2016). Analysis of landslide evolution affecting olive groves using UAV and photogrammetric techniques. Remote Sensing, 8(10). doi: http://dx.doi.org/10.3390/rs8100837

Frankl, A., Stal, C., Abraha, A., Nyssen, J., Rieke-Zapp, D., De Wulf, A., & Poesen, J. (2015). Detailed recording of gully morphology in 3D through image–based modelling. Catena, 127, 92–101. doi: http://dx.doi.org/j.catena.2014.12.016

Gómez-Gutiérrez, Á., Schnabel, S., Berenguer-Sempere, F., Lavado-Contador, F., & Rubio-Delgado, J. (2014). Using 3D photo-reconstruction methods to estimate gully headcut erosion. Catena, 120(0), 91–101. doi: http://dx.doi.org/10.1016/j.catena.2014.04.004

Gómez-Gutiérrez, Á., Schnabel, S., De Sanjosé, J. J., & Contador, F. L. (2012). Exploring the relationships between gully erosion and hydrology in rangelands of SW Spain. Zeitschrift fur Geomorphologie, 56(suppl. 1), 27–44. doi: http://dx.doi.org/10.1127/0372-8854/2012/S-00071

Gómez Gutiérrez, Á., Schnabel, S., & Contador, F. L. (2009). Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land Degradation and Development, 20(5), 535–550. doi: http://dx.doi.org/10.1002/ldr.931

Herguido, E., Lavado Contador, J. F., Gómez Gutiérrez, Á., & Schnabel, S. (2017). Modeling Tree Loss Versus Tree Recruitment Processes in SW Iberian Rangelands as Influenced by Topography and Land use and Management. Land Degradation & Development, 28(5), 1652–1664. doi: http://dx.doi.org/10.1002/ldr.2697

Hu, G., Wu, Y., Liu, B., Zhang, Y., You, Z., & Yu, Z. (2009). The characteristics of gully erosion over rolling hilly black soil areas of Northeast China. Journal of Geographical Sciences, 19(3), 309–320. doi: http://dx.doi.org/10.1007/s11442-009-0309-4

Hugenholtz, C. H., Whitehead, K., Brown, O. W., Barchyn, T. E., Moorman, B. J., Leclair, A., Riddell, K., & Hamilton, T. (2013). Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model. Geomorphology, 194, 16–24. doi: http://dx.doi.org/10.1016/j.geomorph.2013.03.023

Humphrey, N. F., & Heller, P. L. (1995). Natural oscillations in coupled geomorphic systems: an alternative origin for cyclic sedimentation. Geology, 23, 499–502. doi: http://dx.doi.org/10.1130/0091-7613(1995)023<0499:NOICGS>2.3.CO;2

James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research, 117, 1–17. doi: http://dx.doi.org/10.1029/2011JF002289

James, M. R., & Robson, S. (2014). Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surface Processes and Landforms, 39(10), 1413–1420. doi: http://dx.doi.org/10.1002/esp.3609

James, M. R., Robson, S., D'oleire-Oltmanns, S., & Niethammer, U. (2017). Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology, 280, 51–66. doi: http://dx.doi.org/0.1016/j.geomorph.2016.11.021

Kaiser, A., Neugirg, F., Rock, G., Müller, C., Haas, F., Ries, J., & Schmidt, J. (2014). Small-Scale Surface Reconstruction and Volume Calculation of Soil Erosion in Complex Moroccan Gully Morphology Using Structure from Motion. Remote Sensing, 6(8), 7050. doi: http://dx.doi.org/10.3390/rs6087050

Lucieer, A., Jong, S. M., & Turner, D. (2014). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38(1), 97–116. doi: http://dx.doi.org/10.1177/0309133313515293

Mosbrucker, A. R., Major, J. J., Spicer, K. R., & Pitlick, J. (2017). Camera system considerations for geomorphic applications of SfM photogrammetry. Earth Surface Processes and Landforms, 42, 969–986. doi: http://dx.doi.org/10.1002/esp.4066

Neugirg, F., Stark, M., Kaiser, A., Vlacilova, M., Della Seta, M., Vergari, F.,…Haas, F. (2016). Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology, 269, 8–22. doi: http://dx.doi.org/10.1016/j.geomorph.2016.06.027

Perroy, R. L., Bookhagen, B., Asner, G. P., & Chadwick, O. A. (2010). Comparison of gully erosion estimates using airborne and ground-based LIDAR on Santa Cruz Island, California. Geomorphology, 118, 288–300. doi: http://dx.doi.org/10.1016/j.geomorph.2010.01.009

Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: importance and research needs. Catena, 50, 91–133. doi: http://dx.doi.org/10.1016/S0341-8162(02)00143-1

Pulido-Fernández, M., Schnabel, S., Lavado-Contador, J. F., Miralles Mellado, I., & Ortega Pérez, R. (2013). Soil organic matter of Iberian open woodland rangelands as influenced by vegetation cover and land management. Catena, 109, 13–24. doi: http://dx.doi.org/10.1016/j.catena.2013.05.002

Ries, J. B., & Marzolff, I. (2003). Monitoring of gully erosion in the Central Ebro Basin by large-scale aerial photography taken from a remotely controlled blimp. Catena, 50(2–4), 309–328. doi: http://dx.doi.org/10.1016/S0341-8162(02)00133-9

Rubio-Delgado, J., Schnabel, S., Gómez Gutiérrez, Á., & Berenguer-Sempere, F. (2014). Estimación de tasas de erosión históricas en dehesas utilizando raíces arbóreas expuestas y láser escáner terrestre. Cuaternario y Geomorfología, 28(3–4), 69–84.

Schnabel, S. (1997). Soil erosion and runoff production in a small watershed under silvo-pastoral landuse (dehesas) in Extremadura, Spain. Logroño: Geoforma Ediciones.

Smith, M. W., & Vericat, D. (2015). From experimental plots to experimental landscapes: topography, erosion and deposition in sub-humid badlands from Structure-from-Motion photogrammetry. Earth Surface Processes and Landforms, 40(12), 1656–1671. doi: http://dx.doi.org/10.1002/esp.3747

Thomas, J. T., Iverson, N. R., Burkart, M. R., & Kramer, L. A. (2004). Long term growth of a valley-bottom gully, wester Iowa. Earth Surface Processes and Landforms, 29, 995–1009. doi: http://dx.doi.org/10.1002/esp.1084

Tufekcioglu, M., Schultz, R. C., Zaimes, G. N., Isenhart, T. M., & Tufekcioglu, A. (2013). Riparian Grazing Impacts on Streambank Erosion and Phosphorus Loss Via Surface Runoff. Journal of the American Water Resources Association, 49(1), 103–113. doi: http://dx.doi.org/10.1111/jawr.12004

Turner, D., Lucieer, A., & De Jong, S. (2015). Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sensing, 7(2), 1736. doi: http://dx.doi.org/10.3390/rs70201736

Wang, R., Zhang, S., Pu, L., Yang, J., Yang, C., Chen, J.,…Sang, X. (2016). Gully erosion mapping and monitoring at multiple scales based on multi-source remote sensing data of the sancha river catchment, Northeast China. ISPRS International Journal of Geo-Information, 5(11). doi: http://dx.doi.org/10.3390/ijgi5110200

Watts, A. C., Ambrosia, V. G., & Hinkley, E. A. (2012). Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sensing 4(6), 1671. doi: http://dx.doi.org/10.3390/rs4061671

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179(0), 300–314. doi: http://dx.doi.org/10.1016/j.geomorph.2012.08.021

Westoby, M. J., Dunning, S. A., Woodward, J., Hein, A. S., Marrero, S. M., Winter, K., & Sugden, D. E. (2016). Interannual surface evolution of an Antarctic blue-ice moraine using multi-temporal DEMs. Earth Surface Dynamics, 4(2), 515–529. doi: http://dx.doi.org/10.5194/esurf-4-515-2016

Zaimes, G. N., & Schultz, R. C. (2012). Assessing Riparian Conservation Land Management Practice Impacts on Gully Erosion in Iowa. Environmental Management 49(5), 1009–1021. doi: http://dx.doi.org/10.1007/s00267-012-9830-9

Zucca, C., Canu, A., & Della Peruta, R. (2006). Effects of land use and landscape on spatial distribution and morphological features of gullies in an agropastoral area in Sardinia (Italy). Catena 68(2–3), 87–95. doi: http://dx.doi.org/10.1016/j.catena.2006.03.015