Modelos predictivos en Biogeografía: aplicación para la modelización de nichos ecológicos en Geografía Física

Contenido principal del artículo

Oliver Gutiérrez Hernández
Rafael Cámara Artigas
José María Senciales González
Luis V. García

Resumen

La Biogeografía está en el origen de la Geografía moderna. Desde el principio, el estudio de la distribución de los seres vivos y la interpretación de los nichos ecológicos ha constituido uno de los frentes más activos de la Geografía Física. Sin embargo, en algunos países, los geógrafos abandonaron el enfoque ecológico en los estudios de biogeográficos. En este artículo, se propone un flujo de trabajo general para integrar la modelización de nichos ecológicos en el contexto de la Biogeografía como ciencia geográfica que estudia patrones de biodiversidad. El estudio de caso aborda la predicción del nicho ecológico fundamental del alcornoque en Andalucía.



Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Gutiérrez Hernández, O., Cámara Artigas, R., Senciales González, J. M., & García, L. V. (2018). Modelos predictivos en Biogeografía: aplicación para la modelización de nichos ecológicos en Geografía Física. Boletín De La Asociación De Geógrafos Españoles, (78), 88-126. https://doi.org/10.21138/bage.2395

Bibliografía

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723. doi: http://dx.doi.org/10.1109/TAC.1974.1100705

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the True Skill Statistic. Journal of Applied Ecology, 43, 1223–1232. doi: http://dx.doi.org/10.1111/j.1365-2664.2006.01214.x

Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200, 1–19. doi: http://dx.doi.org/10.1016/j.ecolmodel.2006.07.005

Austin, M. (2002). Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157, 101–118. doi: http://dx.doi.org/10.1016/S0304-3800(02)00205-3

Barbosa, F. G., & Schneck, F. (2015). Characteristics of the top-cited papers in species distribution predictive models. Ecological Modelling, 313, 77–83. doi: http://dx.doi.org/10.1016/j.ecolmodel.2015.06.014

Benito, B. M., Lorite, J., Pérez-Pérez, R., Gómez-Aparicio, L., & Peñas, J. (2014). Forecasting plant range collapse in a mediterranean hotspot: When dispersal uncertainties matter. Diversity and Distributions, 20, 72–83. doi: http://dx.doi.org/10.1111/ddi.12148

Benito, B. M., Svenning, J. C., Kellberg-Nielsen, T., Riede, F., Gil-Romera, G., Mailund, T., Kjaergaard, P. C., & Sandel, B. S. (2016). The ecological niche and distribution of Neanderthals during the Last Interglacial. Journal of Biogeography, 44(1), 51–61. doi: http://dx.doi.org/10.1111/jbi.12845

Bowles, G. (1782). Introducción a la historia natural y a la geografía física de España. Madrid: Imprenta Real.

Box, E. O. (1981). Predicting physiognomic vegetation types with climate variables. Vegetatio, 45, 127–139. doi: http://dx.doi.org/10.1007/BF00119222

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. doi: http://dx.doi.org/10.1023/A:1010933404324

Bugalho, M. N., Caldeira, M.C., Pereira, J. S., Aronson, J., & Pausas, J. G. (2011). Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Frontiers in Ecology and the Environment, 9, 278–286. doi: http://dx.doi.org/10.1890/100084

Carrero Carrero, A. J. (2015). Los aprovechamientos del monte en el Suroeste Peninsular: el corcho. Huelva: Universidad de Huelva.

Coelho, M. B., Paulo, J. A., Palma, J. H. N., & Tomé, M. (2012). Contribution of cork oak plantations installed after 1990 in Portugal to the Kyoto commitments and to the landowners economy. Forest Policy and Economics, 17, 59–68. doi: http://dx.doi.org/10.1016/j.forpol.2011.10.005

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.

De La Hoz Rodríguez, F. (2009). Procesos de decaimiento forestal (la Seca): situación del conocimiento. Consejería de Medio Ambiente. Sevilla: Junta de Andalucía.

Díaz Esteban, M., Pulido Díaz, F. J., & Pausas, J. G. (2009). 9330 Alcornocales de Quercus suber. Madrid: MAGRAMA, Dirección General de Medio Natural y Política Forestal. Retrieved from https://www.uv.es/jgpausas/papers/Diaz-2009-habitats.pdf

Dormann, C. F., Mcpherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., … Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30, 609–628. doi: http://dx.doi.org/10.1111/j.2007.0906-7590.05171.x

Efron, B. (1981). Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika, 68, 589–599. doi: http://dx.doi.org/10.1093/biomet/68.3.589

Elith, J., & Graham, C.H. (2009). Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32, 66–77. doi: http://dx.doi.org/10.1111/j.1600-0587.2008.05505.x

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57. doi: http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x

Elton, C. (1927). Animal Ecology. London: Sedgwick and Jackson.

Ferreras Chasco, C., & Fidalgo Hijano, C. (1991). Biogeografía y edafogeografía. Madrid: Síntesis.

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49. doi: http://dx.doi.org/10.1017/S0376892997000088

Fisher, H. J. (2002). Macroecology: new, or biogeography revisited? Nature, 417, 787. doi: http://dx.doi.org/10.1038/417787c

Franklin, J. (1995). Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 19, 474–499. doi: http://dx.doi.org/10.1177/030913339501900403

Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I., & Thuiller, W. (2010). Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions, 16, 331–342. doi: http://dx.doi.org/10.1111/j.1472-4642.2010.00652.x

Goloboff, P. A. (2003). Parsimony, likelihood, and simplicity. Cladistics, 19, 91–103. doi: http://dx.doi.org/10.1111/j.1096-0031.2003.tb00297.x

Gómez-Zotano, J. (2004). The broadleaved tree-conifer controversy at Sierra Bermeja, an ultramafic mountain in southern Spain. In R. S. Boyd, A. J. M. Baker, & J. Proctor (Eds.), Ultramafic rocks: their soils, vegetation and fauna (pp. 151–156). Herts: Science Reviews.

Graham, M. H. (2003). Confronting multicollinearity in ecological multiple regression. Ecology, 84, 2809–2815. doi: http://dx.doi.org/10.1890/02-3114

Grinnell, J. (1917). The Niche-Relationships of the California Thrasher. Auk, 34, 427–433. doi: http://dx.doi.org/10.2307/4072271

Guisan, A., & Edwards, T. C. (2002). Generalized linear and generalized additi v e models in studies of species distributions : setting the scene. Ecological Modelling, 157, 89–100. doi: http://dx.doi.org/10.1016/S0304-3800(02)00204-1

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009. doi: http://dx.doi.org/10.1111/j.1461-0248.2005.00792.x

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186. doi: http://dx.doi.org/10.1016/S0304-3800(00)00354-9

Gutiérrez-Hernández, O., Senciales-González, J. M., & García, L. V. (2016). Evolución de la Superficie Forestal en Andalucía (1956–2007). Procesos y Factores. Revista de Estudios Andaluces, 33, 111–148. doi: http://dx.doi.org/10.12795/rea.2016.i33

Hanley, J. A., & Mcneil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29–36. doi: http://dx.doi.org/10.1148/radiology.143.1.7063747

Hastie, T., & Tibshirani, R. (1986). Generalized Additive Models. Stat. Scienc., 1, 297–310. doi: http://dx.doi.org/10.1214/ss/1177013604

Hijmans, R. J., Phillips, S., Leathwick, J. R., & Elith, J. (2011). dismo: Species Distribution Modeling [Functions package]. Retrieved from https://cran.r-project.org/web/packages/dismo/index.html

Houston Durrant, T., De Rigo, D., & Caudullo, G. (2016). Quercus suber in Europe: distribution, habitat, usage and threats. In European Atlas of Forest Tree Species (pp. e01ff11+). Luxembourg: Publication Office of the European Union.

Humboldt, A. V. (1805). Essai sur le Géographie des Plantes. Paris: Schoell, Lebrault & CO.

Hutchinson, G. (1978). An Introduction to Population Ecology. New Haven: Yale University Press.

Hutchinson, G. (1957). Concluding remarks. Cold Spring Harb Symposia on Quantitative Biology, 22, 415–427. doi: http://dx.doi.org/10.1101/SQB.1957.022.01.039

Ibáñez, B., Ibáñez, I., Gómez-Aparicio, L., Ruiz-Benito, P., García, L. V., & Marañón, T. (2014). Contrasting effects of climate change along life stages of a dominant tree species: The importance of soil-climate interactions. Diversity and Distributions, 20, 872–883. doi: http://dx.doi.org/10.1111/ddi.12193

Instituto de Estadística y Cartografía de Andalucía (2017). Datos Espaciales de Referencia de Andalucía (DERA) [Bases cartográficas]. Retrieved from https://www.juntadeandalucia.es/institutodeestadisticaycartografia/DERA/

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning, with Applications in R. Springer. New York: Springer. doi: http://dx.doi.org/10.1007/978-1-4614-7138-7

Jiménez-Valverde, A. (2012). Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 21, 498–507. doi: http://dx.doi.org/10.1111/j.1466-8238.2011.00683.x

Jiménez-Valverde, A., Acevedo, P., Barbosa, A. M., Lobo, J. M., & Real, R. (2013). Discrimination capacity in species distribution models depends on the representativeness of the environmental domain. Global Ecology and Biogeography, 22, 508–516. doi: http://dx.doi.org/10.1111/geb.12007

Jiménez-Valverde, A., & Lobo, J. M. (2006). The ghost of unbalanced species distribution data in geographical model predictions. Diversity and Distributions, 12, 521–524. doi: https://doi.org/10.1111/j.1366-9516.2006.00267.x

Joffre, R., Rambal, S., & Ratte, J. P. (1999). The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agroforestry Systems, 45, 57–79. doi: https://doi.org/10.1023/A:1006259402496

Kent, M. (2007). Biogeography and macroecology: now a significant component of physical geography. Progress in Physical Geography, 31, 643–657. doi: http://dx.doi.org/10.1177/0309133307087088

Kent, M. (2005). Biogeography and macroecology. Progress in Physical Geography, 29, 256–264. doi: http://dx.doi.org/10.1191/0309133305pp447pr

Lobo, J. M. (2008). More complex distribution models or more representative data? Biodiversity Informatics, 5, 14–19. doi: http://dx.doi.org/10.1093/molbev/msm137

Lobo, J. M., Jiménez-Valverde, A., & Hortal, J. (2010). The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33, 103–114. doi: https://doi.org/10.1111/j.1600-0587.2009.06039.x

Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145–151. doi: http://dx.doi.org/10.1111/j.1466-8238.2007.00358.x

Lomolino, M. V., Riddle, B. A., & Whittaker, R. J. (2016). Biogeography. Sinauer Associates.

López-Tirado, J., & Hidalgo, P. J. (2016). Predictive modelling of climax oak trees in southern Spain: insights in a scenario of global change. Plant Ecology, 217, 451–463. doi: http://dx.doi.org/10.1007/s11258-016-0589-6

Mcinerny, G. J., & Etienne, R. S. (2012). Stitch the niche –a practical philosophy and visual schematic for the niche concept. Journal of Biogeography, 39, 2103–2111. doi: http://dx.doi.org/10.1111/jbi.12032

Mod, H. K., Scherrer, D., Luoto, M., & Guisan, A. (2016). What we use is not what we know: Environmental predictors in plant distribution models. Journal of Vegetation Science, 27(6), 1308–1322. doi: http://dx.doi.org/10.1111/jvs.12444

Montero González, G., & Cañellas, I. M. (2002). El alcornoque (Quercus suber. L). Manual de reforestación y cultivo. Madrid: Mundi–Prensa.

Naimi, B., & Araújo, M.B. (2016). sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39, 368–375. doi: http://dx.doi.org/10.1111/ecog.01881

Naimi, B., Skidmore, A. K., Groen, T. A., & Hamm, N.A.S. (2011). Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling. Journal of Biogeography, 38, 1497–1509. doi: http://dx.doi.org/10.1111/j.1365-2699.2011.02523.x

Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized Linear Models. Journal of the Royal Statistical Society, 135, 370–384. doi: http://dx.doi.org/10.2307/2344614

Nogués-Bravo, D. (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18, 521–531. doi: http://dx.doi.org/10.1111/j.1466-8238.2009.00476.x

Nogués Bravo, D. (2003). El estudio de la distribución espacial en la biodiversidad: concepto y métodos. Cuadernos de Investigación Geográfica, 29, 67–82.

Oreskes, N. (2010). Evaluation (Not Validation) Models. Quantitative Environment, 106, 1453–1460.

Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences. Science, 263, 641–646. doi: http://dx.doi.org/10.1126/science.263.5147.641

Parsons, J. J. (1962). The acorn-hog economy of the oak woodlands of southwestern Spain. Geographical Review, 52, 211–235. doi: http://dx.doi.org/10.1126/science.15.370.195

Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, A.T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117. doi: http://dx.doi.org/10.1111/j.1365-2699.2006.01594.x

Peña-Angulo, D., Brunetti, M., Cortesi, N., & Gonzalez-Hidalgo, J. C. (2016). A new climatology of maximum and minimum temperature (1951–2010) in the Spanish mainland: a comparison between three different interpolation methods. International Journal of Geographical Information Science, 30, 1–24. doi: http://dx.doi.org/10.1080/13658816.2016.1155712

Pérez-Latorre, A. V. (1996). Restauración del alcornocal en Andalucia. Elección y manejo de especies. Ecología, 10, 9–19.

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Bastos Araujo, M. (2011). Ecological niches and geographic distributions. Princeton, NJ: Princeton University Press.

Phillips, S. J., & Dudi, M. (2008). Modeling of species distributions with Maxent : new extensions and a comprehensive evaluation. Ecography, 31, 161–175. doi: http://dx.doi.org/10.1111/j.0906-7590.2008.5203.x

Pulliam, H. R. (2000). On the relationship between niche and distribution. Ecology Letters, 3, 349–361. doi: http://dx.doi.org/10.1046/j.1461-0248.2000.00143.x

Qiao, H., Soberón, J., & Peterson, A.T. (2015). No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution, 6, 1126–1136. doi: https://doi.org/10.1111/2041-210X.12397

Renner, I. W., & Warton, D. I. (2013). Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology. Biometrics, 69, 274–281. doi: http://dx.doi.org/10.1111/j.1541-0420.2012.01824.x

Royle, J. A., Chandler, R. B., Yackulic, C., & Nichols, J. D. (2012). Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution, 3, 545–554. doi: http://dx.doi.org/10.1111/2041-210X.12397

Saupe, E., Barve, V., Myers, C., Soberón, J., Barve, N., Hensz, C., Peterson, A., Owens, H., & Lira-Noriega, A. (2012). Variation in niche and distribution model performance:The need for a priori assessment of key causal factors. Ecological Modelling, 237, 11–22. doi: http://dx.doi.org/10.1016/j.ecolmodel.2012.04.001

Serrasolses, I., Pérez-Devesa, M., Vilagrosa, A., Pausas, J. G., Sauras, T., Cortina, J., & Vallejo, V. R. (2009). Cork Oak Distribution. In Cork Oak Woodlands on the Edge: conservation, adaptive management, and restoration (pp. 89–99). Island Press.

Silva Pérez, R. (2010). La dehesa vista como paisaje cultural. Fisonomías, funcionalidades y dinámicas históricas. Ería, 82, 143–157.

Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10, 1115–1123. doi: http://dx.doi.org/10.1111/j.1461-0248.2007.01107.x

Soberón, J., & Townsend Peterson, A. (2005). Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodivers Informatics, 2, 1–10. doi: http://dx.doi.org/10.17161/bi.v2i0.4

Tobler, W. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Journal of Economic Geography, 46, 234–240. doi: http://dx.doi.org/10.2307/143141

Toumi, L., & Lumaret, R. (1998). Allozyme variation in cork oak (Quercus suber L.): The role of phylogeography and genetic introgression by other Mediterranean oak species and human activities. Theoretical and Applied Genetics, 97, 647–656. doi: http://dx.doi.org/10.1007/s001220050941

Tulloch, A. I. T., Sutcliffe, P., Naujokaitis-Lewis, I., Tingley, R., Brotons, L., Ferraz, K.M.P.M.B., … Rhodes, J. R. (2016). Conservation planners tend to ignore improved accuracy of modelled species distributions to focus on multiple threats and ecological processes. Biological Conservation, 199, 157–171. doi: http://dx.doi.org/10.1016/j.biocon.2016.04.023

Urbieta, I. R., García, L. V., Zavala, M. A., & Marañón, T. (2011). Mediterranean pine and oak distribution in southern Spain: Is there a mismatch between regeneration and adult distribution? Journal of Vegetation Science, 22, 18–31. doi: http://dx.doi.org/10.1111/j.1654-1103.2010.01222.x

Urbieta, I. R., Zavala, M. A., & Marañón, T. (2008). Human and non-human determinants of forest composition in southern Spain: Evidence of shifts towards cork oak dominance as a result of management over the past century. Journal of Biogeography, 35, 1688–1700. doi: http://dx.doi.org/10.1111/j.1365-2699.2008.01914.x

Wallace R., A. (1876). The Geographical Distribution Of Animals. Harper Brother. doi: http://dx.doi.org/10.1086/271871

Zheng, B., & Agresti, A. (2000). Summarizing the predictive power of a generalized linear model. Statistics in Medicin, 19, 1771–1781. doi: http://dx.doi.org/10.1002/1097-0258(20000715)19:13<1771::AID-SIM485>3.3.CO;2-G