El episodio de movimientos en masa asociado a los temporales de nieve de 1888 en el Macizo Asturiano

Contenido principal del artículo

Cristina García-Hernández
Jesús Ruiz-Fernández
Marc Oliva
David Gallinar

Resumen

Este estudio analiza un episodio de movimientos en masa generado en el contexto de una serie de temporales cuyas repercusiones se dejaron sentir en numerosos países europeos e incluso en la Costa Este de Estados Unidos, afectando también al norte peninsular y, muy especialmente, al territorio del Macizo Asturiano. En este ámbito el episodio consistió en cuatro temporales de nieve que se sucedieron entre el 14 de febrero y el 8 de abril de 1888, dando lugar a espesores nivales que alcanzaron los 9 m de espesor máximo en núcleos como Pajares (1000 m s.n.m.). El manejo de fuentes históricas en combinación con el trabajo de campo y las entrevistas realizadas entre la población, ha permitido esclarecer las circunstancias en las que algunos de estos eventos se dieron, estableciendo la tipología de 27 de los movimientos desencadenados y determinando que, el deslizamiento, fue el tipo de inestabilidad más común. Determinados condicionantes como la litología del sustrato y el abrupto relieve propio de las zonas más altas del Macizo, unidos a factores antrópicos como las modificaciones previamente realizadas en la topografía de determinadas áreas, influyeron en el desarrollo de los hechos. Sin embargo, los aportes de agua procedentes de la fusión nival, se muestran como el principal agente causal de este episodio de movimientos en masa en el que 28 eventos generaron daños materiales así como grandes retrasos en las comunicaciones, resultando fallecida una persona.



Detalles del artículo

Cómo citar
García-Hernández, C., Ruiz-Fernández, J., Oliva, M., & Gallinar, D. (2018). El episodio de movimientos en masa asociado a los temporales de nieve de 1888 en el Macizo Asturiano. Boletín De La Asociación De Geógrafos Españoles, (76), 52-78. https://doi.org/10.21138/bage.2515

Bibliografía

Barriendos, M. (1997). Climatic variations in the Iberian Peninsula during the late Maunder Minimum (AD 1675-1715): an analysis of data from rogation ceremonies. The Holocene, 7, 105-111.

Benito, G., y Thorndycraft, V. R. (2004). Systematic, Palaeoflood and Historical Data for the Improvement of Flood Rrisk Estimation: Methodological Guidelines. Madrid: CSIC.

Caine, N. (1992). Sediment transfer on the floor of the Martinelli snowpatch, Colorado front Range, U.S.A. Geografiska Annaler: Series A, Physical Geography, 74, 133-144.

Chleborad, A. F. (1997). Temperature, Snowmelt, and the Onset of Spring Season Landslides in the Central Rocky Mountains. Denver: U.S. Geological Survey.

Decaulne, A., Sæmundsson, Þ., y Petursson, O. (2005). Debris Flow Triggered by Rapid Snowmelt: A Case Study in The Gleiðarhjalli Area, Northwestern Iceland. Geografiska Annaler: Series A, Physical Geography, 87, 487-500.

Degraff, J. V., Mckean, J., Watanabe, P. E., y Mccaffery, W. F. (1984). Landslide activity and ground-water conditions: insights from a road in the Central Sierra Nevada, California. Transportation Research Record, 965, 32-37.

Devoli, G., Morales, A., y Høeg, K. (2007). Historical landslides in Nicaragua: collection and analysis of data. Landslides, 4, 5-18.

Domínguez-Cuesta, M. J., Jiménez-Sánchez, M., y Rodríguez-García, A. (1999). Press archives as temporal records of landslides in the North of Spain, relationships between rainfall and instability slope events. Geomorphology, 30, 125-132.

Domínguez-Cuesta, M. J., Jiménez-Sánchez, M., y Berrezueta, E. (2007). Landslides in the Central Coalfield (Cantabrian Mountains, NW Spain): Geomorphological features, conditioning factors and methodological implications in susceptibility assessment. Geomorphology, 89, 358-369.

Elliott, A. H., y Kirschbaum, M. J. (2007). The Preliminary Landslide History Database of Utah, 1850-1978. Utah: Utah Geological Survey.

Ericsson, J. (1991). Las Tormentas: de antiguas creencias a la moderna meteorología. Madrid: McGraw-Hill/Interamericana de España.

Fernández-Iglesias, E., Menéndez-Duarte, R., y Santos-Alonso, R. (2010). La cornisa cantábrica. Ejemplo de red hidrográfica dominada por ríos en roca. En J. A. Ortega y J. J. Durán (Eds.), Patrimonio geológico: los ríos en roca de la Península Ibérica (pp. 193-210). Madrid: Instituto Geológico y Minero de España.

García-Hernández, C., Ruiz-Fernández, J., Sánchez de Posada, C., y Poblete, M. A. (2014). El impacto del episodio avalanchoso de 1888 en el Macizo Asturiano, a través de la prensa. En A. Gómez-Ortiz, F. Salvador, M. Oliva y M. Salvà (Eds.), Avances, métodos y técnicas en el estudio del periglaciarismo (pp. 55-64). Barcelona: Universidad de Barcelona.

García-Hernández, C., Ruiz-Fernández, J., Sánchez-Posada, C., Pereira, S., Oliva, M., y Vieira, G. (2017). Reforestation and land use change as drivers for a decrease of avalanche damage in mid latitude mountains (NW Spain). Global and Planetary Change, 153, 35-50.

García-Hernández, C., Ruiz-Fernández, J., Sánchez-Posada, C., Pereira, S., y Oliva, M. (2018). An extreme event between the Little Ice Age and the 20th Century: the snow avalanche cycle of 1888 in the Asturian Massif (Northern Spain). Cuadernos de Investigación Geográfica. doi: http://dx.doi.org/10.18172/cig.3386.

García-Ruiz, J., Chueca, A., y Julián, J. (2004). Los movimientos en masa del Alto Gállego. En J. L. Peña, L. A. Longares y M. Sánchez (Eds.), Geografía Física de Aragón. Aspectos generales y temáticos (pp. 141-152). Zaragoza: Universidad de Zaragoza e Institución Fernando el Católico.

Glancy, P. A., y Bell, J. W. (2000). Landslide-induced flooding at Ophir Creek, Washoe County, western Nevada, May 30, 1983. U.S. Geological Survey Professional, Reston, Virginia, 1617.

Gokceoglu, C., Sonmez, H., Nefeslioglu, H. A., Duman, T. Y., y Can, T. (2005). The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Engineering Geology, 81, 65-83.

Gómez, A., Palacios, D., Luengo, E., Tanarro, L.M., Schulte, L., Ramos, M., y Salvador, F. (2002). Inestabilidad de taludes y cubierta nival en áreas marginales de permafrost. El caso de la pared norte del Veleta (Sierra Nevada, España). Revista de Geografía, 1, 35¬-56.

González-Trueba, J. J., y Serrano, E. (2010). La nieve en los Picos de Europa: Implicaciones geomorfológicas y ambientales. Cuadernos de Investigación Geográfica, 36(2), 61-84.

Gutiérrez, M., Pando, L., y García-Ramos, J. C. (2008). Procesos y productos de alteración de formaciones rocosas en Asturias y su repercusión socio-económica. Boletín Geológico y Minero, 119(2), 211-230.

Harr, R. D. (1981). Some characteristics and consequences of snowmelt during rainfall in western Oregon. Journal of Hidrology, 53, 277-304.

Horton, R. E. (1938). Phenomena of the contact zone between the ground surface and a layer of melting snow. Associacion Internationale d’Hydrologie Scientifique, 244, 545-561.

Horton, R. E. (1945). Infiltration and runoff during the snow-melting season, with forest-cover. Transactions American Geophysical Union, 26, 59-68.

Huschke, R. W. (1959). Glossary of Meteorology. Boston: American Meteorological Society.

Jiménez-Sánchez, M., Farias, P., Rodríguez-García, A., y Menéndez Duarte, R.A. (1999). Landslide development in a coastal valley in Northern Spain: Conditioning factors and temporal occurrence. Geomorphology, 30, 115-123.

Kocin, P. J. (1983). An Analysis of the “Blizzard of '88”. Bulletin of the American Meteorological Society, 64, 1258-1272.

Mcsaveney, M. J., y Whitehouse, I. E. (1989). Anthropic erosion of mountain land in Canterbury. New Zealand Journal of Ecology, 12, 151-163.

Marquínez, J., Menéndez, R., Lastra, J., Fernández-Iglesias, E., Jiménez-Alfaro González, B., Wozniak, E., Fernández, S., García-Roces, J., García-Manteca, P., Álvarez, M.A., Lobo Del Corro, T., y Adrados, L. (2003). Riesgos Naturales en Asturias. Oviedo: KRK.

Morton, D. M., y Campbell, R. H. (1974). Spring mudflows at Wrightwood, Southern California. Quarterly Journal of Engineering Geology and Hydrogeology, 7, 377-384.

Muntán, E., García, C., Oller, P., Martí, G., García, A., y Gutiérrez, E. (2009). Reconstructing snow avalanches in the Southeastern Pyrenees. Natural Hazards and Earth System Science, 9, 1599-1612.

Muñoz, J. (1982). Geografía Física. El relieve, el clima y las aguas. En F. Quirós (Dir.), Geografía de Asturias, tomo I (pp. 1-271). Salinas: Ayalga Ediciones.

Naudet, V., Lazzari, M., Perrone, A., Loperte, A., Piscitelli, S., y Lapenna, V. (2008). Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy). Engineering Geology, 98, 156-167.

Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10), 927-930.

Podolskiy, E., Izumi, K., Suchkov, V., y Eckert, N. (2014). Physical and societal statistics for a century of snow-avalanche hazards on Sakhalin and the Kuril Islands (1910-2010). Journal of Glaciology, 60, 409-430.

Popescu, M. (1996). From landslide causes to landslide remediation. En Procedings of the 7th International Symposium on Landslides (pp. 75-96). Trondheim, Norway.

Pulgar, J. A., Alonso, J. L., Espina, R. G., y Marín, J. A. (1999). La deformación alpina en el basamento varisco de la Zona Cantábrica. Trabajos de Geología, 21, 283-294.

Raetzo, H., Lateltin, O., y Tripet, J. P. (2002). Landslides and evaluation of triggering factors, hazard assessment practice in Switzerland. En J. Rybar, J. Stemberk y P. Wagner (Eds.), Proceedings of the 1st European conference on landslides (pp. 455-460). Rotterdam: Balkema.

Rossi, M., Witt, A., Guzzetti, F., Malamud, B., y Peruccacci, S. (2010). Analysis of historical landslide time series in the Emilia-Romagna region, northern Italy. Earth Surface Processes and Landforms, 35, 1123-1137.

Rulli, M. C., Gobattoni, F., y Santini, M. (2013). GALLIUS: Geomorphohydrological Model for Landslide Initiation Under Snowmelting. En C. Margottini, P. Canuti y K. Sassa (Eds.), Landslide Science and Practice (pp. 409-415). Springer: Berlin, Heidelberg.

Ruiz-Fernández, J., Poblete, M. A., y García-Hernández, C. (2014). Características morfoclimáticas y procesos y formas periglaciares actuales en el Macizo Occidental de los Picos de Europa (Cordillera Cantábrica). En A. Gómez-Ortiz, F. Salvador, M. Oliva y M. Salvà (Eds.), Avances, métodos y técnicas en el estudio del periglaciarismo (pp. 91-103). Barcelona: Universidad de Barcelona.

Ruiz-Fernández, J. (2015). Las formas de modelado glaciar, periglaciar y fluviotorrencial del Macizo Occidental de los Picos de Europa (Cordillera Cantábrica). Boletín de la Asociación de Geógrafos Españoles, 68, 581-587.

Sæmundsson, P., Pétursson, H. G., y Decaulne, A. (2003). Triggering factors for rapid mass-movements in Iceland. En D. Rickenman, y C. I. Chen (Eds.), Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment (pp. 167-178). Rotterdam: Millpress.

Santos, R., y Menéndez Duarte, M. (2006). Topographic signature of debris flow dominated channels implications for hazard assessment. En G. Lorenzini, C. A. Brebbia y D. Emmanouloudis (Eds.), Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows (pp. 301-310). Southampton, Boston: WIT Press.

Schuster, R. L. (1996). Socioeconomic significance of landslides. En A. K. Turner y R. L. Schuster (Eds.), Landslides: Investigation and Mitigation: Special Report, vol. 247 (pp. 12-36). Washington, D.C.: National Academic Press.

Schuster, R. L., y Wieczorek, G. F. (2002). Landslide triggers and types. En J. Rybar, J. Stemberk y P. Wagner (Eds.), Landslides. Procedings of the 1st European Conference on Landslides (pp. 59-78). Prague.

Serrano, E., y González Trueba, J. J. (2004). Morfodinámica periglaciar en el grupo Peña Vieja (Macizo Central de los Picos de Europa -Cantabria-). Cuaternario y Geomorfología, 18, 73-78.

STARKEL, L. (1976). The role of extreme (catastrophic) meteorological events in contemporary evolution of slopes. En E. Derbyshire (Ed.), Geomorphology and climate (pp. 203-246). Londres: Wiley.

Strömquist, L. (1985). Geomorphic impact of snowmelt on slope erosion and sediment production. Zeitschrift für Geomorphologie N. F., 29, 129-138.

Tanarro, L. M., Palacios, D., Zamorano, J. J., y Gómez-Ortiz, A. (2010). Cubierta nival, permafrost y formación de flujos superficiales en el talud detrítico de alta montaña (Corral del Veleta, Sierra Nevada. España). Cuadernos de Investigación Geográfica, 36, 39-59.

Vadillo, J. A. (1987). Formas y procesos en la evolución de vertientes de la Sierra de la Demanda (Sistema Ibérico). Cuadernos de Investigación Geográfica, 13, 9-153.

Valcárcel, M, y Carrera, P. (2010). La acción geomorfológica del manto nivoso estacional en la Sierra de Ancares: Vertiente nororiental del Pico Cuiña (León). Cuadernos de Investigación Geográfica, 36, 85-98.

Varnes, D. J. (1978). Slope movement types and processes. En R. L. Schuster y R. J. Krizek (Eds.), Landslides: Analysis and Control, Special Report, vol. 176 (pp. 11-33). Washington, D.C.: National Academic Press.

Wieczorek, G. F. (1996). Landslide triggering mechanisms. En A. K. Turner y R. L. Schuster (Eds.), Landslides: Investigation and Mitigation: Special Report, vol. 247 (pp. 76-90). Washington, D.C: National Academic Press.

Wieczorek, G. F., y Glade, T. (2005). Climatic factors influencing occurrence of debris flows. En M. Jakob y O. Hungr (Eds.), Debris-flow hazards and related phenomena (pp. 325-362). Chichester, Springer-Praxis.