Studying the influence of livestock pressure on gully erosion in rangelands of SW Spain by means of the UAV+SfM workflow
Contenido principal del artículo
Resumen
La erosión por cárcavas supone un proceso de degradación del suelo frecuente en los sistemas agrosilvopastoriles del SO español que ha sido poco estudiado. Se analizan aquí la viabilidad de uso de vehículos aéreos no tripulados (UAV) y la fotogrametría SfM para cartografiar cárcavas de fondo de valle en estos paisajes. Los resultados muestran precisión centimétrica. Se debaten las fortalezas y limitaciones de la metodología empleada. La cartografía resultante permitió cartografiar las formas erosivas a una escala excepcional. Todas las zonas de estudio mostraron evidencias de degradación.
Descargas
Detalles del artículo
Bibliografía
Belsky, A. J., Matzke, A., & Uselman S. (1999). Survey of livestock influences on stream and riparian ecosystems in the western United States. Journal of Soil and Water Conservation, 54(1), 419–431.
Casalí, J., Loizu, J., Campo, M. A., De Santisteban, L. M., & Álvarez–Mozos, J. (2006). Accuracy of methods for field assessment of rill and ephemeral gully erosion. Catena, 67(2), 128–138. doi: http://dx.doi.org/10.1016/j.catena.2006.03.005
Castillo, C., Pérez, R., James, M. R., Quinton, N. J., Taguas, E. V., & Gómez, A. (2012). Comparing the accuracy of several field methods for measuring gully erosion. Soil Science Society of America Journal, 76(4), 1319–1332. doi: http://dx.doi.org/10.2136/sssaj2011.0390
Cook, K. L. (2017). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278, 195–208. doi: http://dx.doi.org/10.1016/j.geomorph.2016.11.009
Chaplot, V. (2013). Impact of terrain attributes, parent material and soil types on gully erosion. Geomorphology, 186, 1–11. doi: http://dx.doi.org/10.1016/j.geomorph.2012.10.031
Christian, P., & Davis, J. (2016). Hillslope gully photogeomorphology using structure-from-motion. Zeitschrift fur Geomorphologie, 60, 59–78. doi: http://dx.doi.org/10.1127/zfg_suppl/2016/00238
Ehiorobo, J. O., & Audu, H. A. P. (2012). Monitoring of gully erosion in an urban area using geoinformation technology. Journal of Emerging Trends in Engineering and Applied Sciences, 3(2), 270–275.
Ely, J. C., Graham, C., Barr, I. D., Rea, B. R., Spagnolo, M., & Evans, J. (2017). Using UAV acquired photography and structure from motion techniques for studying glacier landforms: application to the glacial flutes at Isfallsglaciären. Earth Surface Processes and Landforms, 42(6), 877–888. doi: http://dx.doi.org/10.1002/esp.4044
Evans, M., & Lindsay, J. (2010). High resolution quantification of gully erosion in upland peatlands at the landscape scale. Earth Surface Processes and Landforms, 35(8), 876–886. doi: http://dx.doi.org/10.1002/esp.1918
Fernández, T., Pérez, J. L., Cardenal, J., Gómez, J. M., Colomo, C., & Delgado, J. (2016). Analysis of landslide evolution affecting olive groves using UAV and photogrammetric techniques. Remote Sensing, 8(10). doi: http://dx.doi.org/10.3390/rs8100837
Frankl, A., Stal, C., Abraha, A., Nyssen, J., Rieke-Zapp, D., De Wulf, A., & Poesen, J. (2015). Detailed recording of gully morphology in 3D through image–based modelling. Catena, 127, 92–101. doi: http://dx.doi.org/j.catena.2014.12.016
Gómez-Gutiérrez, Á., Schnabel, S., Berenguer-Sempere, F., Lavado-Contador, F., & Rubio-Delgado, J. (2014). Using 3D photo-reconstruction methods to estimate gully headcut erosion. Catena, 120(0), 91–101. doi: http://dx.doi.org/10.1016/j.catena.2014.04.004
Gómez-Gutiérrez, Á., Schnabel, S., De Sanjosé, J. J., & Contador, F. L. (2012). Exploring the relationships between gully erosion and hydrology in rangelands of SW Spain. Zeitschrift fur Geomorphologie, 56(suppl. 1), 27–44. doi: http://dx.doi.org/10.1127/0372-8854/2012/S-00071
Gómez Gutiérrez, Á., Schnabel, S., & Contador, F. L. (2009). Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land Degradation and Development, 20(5), 535–550. doi: http://dx.doi.org/10.1002/ldr.931
Herguido, E., Lavado Contador, J. F., Gómez Gutiérrez, Á., & Schnabel, S. (2017). Modeling Tree Loss Versus Tree Recruitment Processes in SW Iberian Rangelands as Influenced by Topography and Land use and Management. Land Degradation & Development, 28(5), 1652–1664. doi: http://dx.doi.org/10.1002/ldr.2697
Hu, G., Wu, Y., Liu, B., Zhang, Y., You, Z., & Yu, Z. (2009). The characteristics of gully erosion over rolling hilly black soil areas of Northeast China. Journal of Geographical Sciences, 19(3), 309–320. doi: http://dx.doi.org/10.1007/s11442-009-0309-4
Hugenholtz, C. H., Whitehead, K., Brown, O. W., Barchyn, T. E., Moorman, B. J., Leclair, A., Riddell, K., & Hamilton, T. (2013). Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model. Geomorphology, 194, 16–24. doi: http://dx.doi.org/10.1016/j.geomorph.2013.03.023
Humphrey, N. F., & Heller, P. L. (1995). Natural oscillations in coupled geomorphic systems: an alternative origin for cyclic sedimentation. Geology, 23, 499–502. doi: http://dx.doi.org/10.1130/0091-7613(1995)023<0499:NOICGS>2.3.CO;2
James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research, 117, 1–17. doi: http://dx.doi.org/10.1029/2011JF002289
James, M. R., & Robson, S. (2014). Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surface Processes and Landforms, 39(10), 1413–1420. doi: http://dx.doi.org/10.1002/esp.3609
James, M. R., Robson, S., D'oleire-Oltmanns, S., & Niethammer, U. (2017). Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology, 280, 51–66. doi: http://dx.doi.org/0.1016/j.geomorph.2016.11.021
Kaiser, A., Neugirg, F., Rock, G., Müller, C., Haas, F., Ries, J., & Schmidt, J. (2014). Small-Scale Surface Reconstruction and Volume Calculation of Soil Erosion in Complex Moroccan Gully Morphology Using Structure from Motion. Remote Sensing, 6(8), 7050. doi: http://dx.doi.org/10.3390/rs6087050
Lucieer, A., Jong, S. M., & Turner, D. (2014). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38(1), 97–116. doi: http://dx.doi.org/10.1177/0309133313515293
Mosbrucker, A. R., Major, J. J., Spicer, K. R., & Pitlick, J. (2017). Camera system considerations for geomorphic applications of SfM photogrammetry. Earth Surface Processes and Landforms, 42, 969–986. doi: http://dx.doi.org/10.1002/esp.4066
Neugirg, F., Stark, M., Kaiser, A., Vlacilova, M., Della Seta, M., Vergari, F.,…Haas, F. (2016). Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology, 269, 8–22. doi: http://dx.doi.org/10.1016/j.geomorph.2016.06.027
Perroy, R. L., Bookhagen, B., Asner, G. P., & Chadwick, O. A. (2010). Comparison of gully erosion estimates using airborne and ground-based LIDAR on Santa Cruz Island, California. Geomorphology, 118, 288–300. doi: http://dx.doi.org/10.1016/j.geomorph.2010.01.009
Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C. (2003). Gully erosion and environmental change: importance and research needs. Catena, 50, 91–133. doi: http://dx.doi.org/10.1016/S0341-8162(02)00143-1
Pulido-Fernández, M., Schnabel, S., Lavado-Contador, J. F., Miralles Mellado, I., & Ortega Pérez, R. (2013). Soil organic matter of Iberian open woodland rangelands as influenced by vegetation cover and land management. Catena, 109, 13–24. doi: http://dx.doi.org/10.1016/j.catena.2013.05.002
Ries, J. B., & Marzolff, I. (2003). Monitoring of gully erosion in the Central Ebro Basin by large-scale aerial photography taken from a remotely controlled blimp. Catena, 50(2–4), 309–328. doi: http://dx.doi.org/10.1016/S0341-8162(02)00133-9
Rubio-Delgado, J., Schnabel, S., Gómez Gutiérrez, Á., & Berenguer-Sempere, F. (2014). Estimación de tasas de erosión históricas en dehesas utilizando raíces arbóreas expuestas y láser escáner terrestre. Cuaternario y Geomorfología, 28(3–4), 69–84.
Schnabel, S. (1997). Soil erosion and runoff production in a small watershed under silvo-pastoral landuse (dehesas) in Extremadura, Spain. Logroño: Geoforma Ediciones.
Smith, M. W., & Vericat, D. (2015). From experimental plots to experimental landscapes: topography, erosion and deposition in sub-humid badlands from Structure-from-Motion photogrammetry. Earth Surface Processes and Landforms, 40(12), 1656–1671. doi: http://dx.doi.org/10.1002/esp.3747
Thomas, J. T., Iverson, N. R., Burkart, M. R., & Kramer, L. A. (2004). Long term growth of a valley-bottom gully, wester Iowa. Earth Surface Processes and Landforms, 29, 995–1009. doi: http://dx.doi.org/10.1002/esp.1084
Tufekcioglu, M., Schultz, R. C., Zaimes, G. N., Isenhart, T. M., & Tufekcioglu, A. (2013). Riparian Grazing Impacts on Streambank Erosion and Phosphorus Loss Via Surface Runoff. Journal of the American Water Resources Association, 49(1), 103–113. doi: http://dx.doi.org/10.1111/jawr.12004
Turner, D., Lucieer, A., & De Jong, S. (2015). Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sensing, 7(2), 1736. doi: http://dx.doi.org/10.3390/rs70201736
Wang, R., Zhang, S., Pu, L., Yang, J., Yang, C., Chen, J.,…Sang, X. (2016). Gully erosion mapping and monitoring at multiple scales based on multi-source remote sensing data of the sancha river catchment, Northeast China. ISPRS International Journal of Geo-Information, 5(11). doi: http://dx.doi.org/10.3390/ijgi5110200
Watts, A. C., Ambrosia, V. G., & Hinkley, E. A. (2012). Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sensing 4(6), 1671. doi: http://dx.doi.org/10.3390/rs4061671
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179(0), 300–314. doi: http://dx.doi.org/10.1016/j.geomorph.2012.08.021
Westoby, M. J., Dunning, S. A., Woodward, J., Hein, A. S., Marrero, S. M., Winter, K., & Sugden, D. E. (2016). Interannual surface evolution of an Antarctic blue-ice moraine using multi-temporal DEMs. Earth Surface Dynamics, 4(2), 515–529. doi: http://dx.doi.org/10.5194/esurf-4-515-2016
Zaimes, G. N., & Schultz, R. C. (2012). Assessing Riparian Conservation Land Management Practice Impacts on Gully Erosion in Iowa. Environmental Management 49(5), 1009–1021. doi: http://dx.doi.org/10.1007/s00267-012-9830-9
Zucca, C., Canu, A., & Della Peruta, R. (2006). Effects of land use and landscape on spatial distribution and morphological features of gullies in an agropastoral area in Sardinia (Italy). Catena 68(2–3), 87–95. doi: http://dx.doi.org/10.1016/j.catena.2006.03.015