Resumen : 131 vistas.

Identificación de atracciones urbanas centrales mediante seguimiento GPS y análisis de redes

Ibon Aranburu Amiano, Beatriz Plaza Inchausti, Marisol Esteban Galarza

Resumen

Este estudio presenta una metodología aplicable en la identificación de atracciones turísticas centrales en entornos urbanos mediante el uso combinado de datos GPS y análisis de redes de atracciones visitadas por los turistas. La identificación de las atracciones centrales es fundamental para los gestores de una ciudad, tanto a la hora de planificar las instalaciones y servicios urbanos, o gestionar los recursos municipales, como localizar nuevas atracciones o captar todos los beneficios potenciales de los mismos. El primer paso de la metodología propuesta es la detección de las atracciones visitadas mediante el análisis de datos GPS. A partir de este conjunto de datos GPS se construye una red cuyos nodos son las atracciones visitadas y posteriormente se realiza el análisis de redes correspondiente. El estudio empírico se ha llevado a cabo en la ciudad de Bilbao, destino turístico que ha obtenido fama internacional gracias al Museo Guggenheim. Sorprendentemente, nuestra metodología conduce a resultados inesperados: mientras que los contenidos de las redes sociales (por ejemplo, TripAdvisor) y los expertos (agentes turísticos) señalan al Guggenheim como el principal activo turístico, en realidad resulta ser el Casco Viejo el lugar más visitado de Bilbao según el comportamiento espacial real detectado por nuestro método. Este enfoque metodológico puede servir para tomar decisiones más adaptadas y definir mejores políticas en materia de planificación y gestión urbana.

Texto completo:

PDF

Referencias

Abedi, N., Bhaskar, A., & Chung, E. (2014). Tracking spatio-temporal movement of human in terms of space utilization using Media-Access-Control address data. Applied Geography, 51, 72–81. https://doi.org/10.1016/j.apgeog.2014.04.001

Aranburu, I., Plaza, B., & Esteban, M. (2016). Sustainable Cultural Tourism in Urban Destinations: Does Space Matter? Sustainability, 8(8), 699. https://doi.org/10.3390/su8080699

Ashbrook, D., & Starner, T. (2003). Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing, 7(5), 275–286. https://doi.org/10.1007/s00779-003-0240-0

Axhausen, K. W., Schonfelder, S., Wolf, J., Oliveira, M., & Samaga, U. (2003). Eighty weeks of GPS traces: Approaches to enriching trip information. In The 83rd Transportation Research Board Meeting (pp. 1870–1876). Washington, DC.

Barthélemy, M. (2011). Spatial networks. Physics Reports, 499(1–3), 1–101. https://doi.org/10.1016/j.physrep.2010.11.002

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Retrieved from http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

Bohte, W., & Maat, K. (2009). Deriving and validating trip purposes and travel modes for multi-day GPS-based travel surveys: A large-scale application in the Netherlands. Transportation Research Part C: Emerging Technologies, 17(3), 285–297. https://doi.org/10.1016/j.trc.2008.11.004

Capello, R., & Perucca, G. (2017). Cultural Capital and Local Development Nexus: Does the Local Environment Matter? In Socioeconomic Environmental Policies and Evaluations in Regional Science (pp. 103–124). Springer. https://doi.org/10.1007/978-981-10-0099-7_6

Cheng, J., Karambelkar, B., & Xie, Y. (2017). Leaflet: Create Interactive Web Maps with the JavaScript “Leaflet” Library. R package version 1.1.0. Retrieved from https://cran.r-project.org/package=leaflet

CICtourGUNE. (2011). Centro de Investigación Cooperativa en Turismo. Spain.

Demšar, U., Špatenková, O., & Virrantaus, K. (2008). Identifying Critical Locations in a Spatial Network with Graph Theory. Transactions in GIS, 12(1), 61–82. https://doi.org/10.1111/j.1467-9671.2008.01086.x

Dietvorst, A., & Ashworth, G. (1995). Tourist behaviour and the importance of time-space analysis. In Tourism and spatial transformations. (pp. 163–181). CAB International.

Esteban, M. (1999). Bilbao, luces y sombras del titanio: el proceso de regeneración del Bilbao metropolitano. Servicio Editorial de la Universidad del País Vasco.

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239. https://doi.org/10.1016/0378-8733(78)90021-7

Freytag, T. (2002). Tourism in Heidelberg: getting a picture of the city and its visitors. In City tourism 2002: Proceedings of European Cities Tourism's International Conference in Vienna, Austria, 2002 (pp. 211–219). Springer-Verlag Wien.

Fu, Z., Tian, Z., Xu, Y., & Qiao, C. (2016). A Two-Step Clustering Approach to Extract Locations from Individual GPS Trajectory Data. ISPRS International Journal of Geo-Information, 5(10), 166. https://doi.org/10.3390/ijgi5100166

Galí Espelt, N., & Donaire Benito, J. A. (2018). First-time versus repeat visitors’ behavior patterns: a GPS analysis. Boletín de La Asociación de Geógrafos Españoles, (78), 2711. https://doi.org/10.21138/bage.2711

García-Palomares, J. C., Gutiérrez, J., & Mínguez, C. (2015). Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and GIS. Applied Geography, 63, 408–417. https://doi.org/10.1016/j.apgeog.2015.08.002

Gobierno Vasco. (2012). Open Data Euskadi. Retrieved from http://opendata.euskadi.eus

Gospodini, A. (2001). Urban Design , Urban Space Morphology , Urban Tourism : An Emerging New Paradigm Concerning. European Planning Studies, 9(7), 925–934. https://doi.org/10.1080/0965431012007984

Grinberger, A. Y., Shoval, N., & McKercher, B. (2014). Typologies of tourists’ time–space consumption: a new approach using GPS data and GIS tools. Tourism Geographies, 16(1), 105–123. https://doi.org/10.1080/14616688.2013.869249

Gschwender, A., Munizaga, M., & Simonetti, C. (2016). Using smart card and GPS data for policy and planning: The case of Transantiago. Research in Transportation Economics, 59, 242–249. https://doi.org/10.1016/j.retrec.2016.05.004

Hall, C. M., & Ram, Y. (2019). Measuring the relationship between tourism and walkability? Walk Score and English tourist attractions. Journal of Sustainable Tourism, 27(2), 223–240. https://doi.org/10.1080/09669582.2017.1404607

Hartman, G. W. (1950). The Central Business District - A Study in Urban Geography. Economic Geography, 26(4), 237. https://doi.org/10.2307/141260

Hasan, S., Schneider, C. M., Ukkusuri, S. V, & González, M. C. (2013). Spatiotemporal Patterns of Urban Human Mobility. Journal of Statistical Physics, 151(1–2), 304–318. https://doi.org/10.1007/s10955-012-0645-0

Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., & Ratti, C. (2014). Geo-located Twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 41(3), 260–271. https://doi.org/10.1080/15230406.2014.890072

Jayasinghe, A., Sano, K., & Rattanaporn, K. (2017). Application for developing countries: Estimating trip attraction in urban zones based on centrality. Journal of Traffic and Transportation Engineering (English Edition), 4(5), 464–476.

Kaplan, E. D. (1996). Understanding GPS: Principles and Applications. Artech House.

Karambelkar, B., & Zheng, B. (2017). Extra Functionality for “leaflet” Package. Retrieved from https://cran.r-project.org/package=leaflet.extras

Kladou, S., & Mavragani, E. (2015). Assessing destination image: An online marketing approach and the case of TripAdvisor. Journal of Destination Marketing & Management, 4(3), 187–193. https://doi.org/10.1016/j.jdmm.2015.04.003

Kourtit, K., Nijkamp, P., & Partridge, M. D. (2013). The New Urban World. European Planning Studies, 21(3), 285–290. https://doi.org/10.1080/09654313.2012.716242

Lau, G., & McKercher, B. (2006). Understanding tourist movement patterns in a destination: A GIS approach. Tourism and Hospitality Research, 7(1), 39–49. https://doi.org/10.1057/palgrave.thr.6050027

Le-Klähn, D.-T. (2016). Sustainable Tourist Mobility: Implications for Urban Destination Management. In Sustainable Mobility in Metropolitan Regions (pp. 55–63). Wiesbaden: Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-14428-9_4

Leung, X. Y., Wang, F., Wu, B., Bai, B., Stahura, K. A., & Xie, Z. (2012). A Social Network Analysis of Overseas Tourist Movement Patterns in Beijing: the Impact of the Olympic Games. International Journal of Tourism Research, 14(5), 469–484. https://doi.org/10.1002/jtr.876

Lew, A., & McKercher, B. (2006). Modeling Tourist Movements. A Local Destination Analysis. Annals of Tourism Research, 33(2), 403–423. https://doi.org/10.1016/j.annals.2005.12.002

Liu, B., Huang, S. S., & Fu, H. (2017). An application of network analysis on tourist attractions: The case of Xinjiang, China. Tourism Management, 58, 132–141. https://doi.org/10.1016/j.tourman.2016.10.009

Mazimpaka, J. D., & Timpf, S. (2015). Exploring the Potential of Combining Taxi GPS and Flickr Data for Discovering Functional Regions. In AGILE 2015 (pp. 3–18). Springer. https://doi.org/10.1007/978-3-319-16787-9_1

Mckercher, B., & Lau, G. (2008). Movement Patterns of Tourists within a Destination. Tourism Geographies, 10(3), 355–374. https://doi.org/10.1080/14616680802236352

McKercher, B., Shoval, N., Ng, E., & Birenboim, A. (2012). First and Repeat Visitor Behaviour: GPS Tracking and GIS Analysis in Hong Kong. Tourism Geographies, 14(1), 147–161. https://doi.org/10.1080/14616688.2011.598542

Modsching, M., Kramer, R., Hagen, K. Ten, & Gretzel, U. (2008). Using Location-based Tracking Data to Analyze the Movements of City Tourists. Information Technology & Tourism, 10(1), 31–42. https://doi.org/10.3727/109830508785059011

Montoliu, R., Blom, J., & Gatica-Perez, D. (2013). Discovering places of interest in everyday life from smartphone data. Multimedia Tools and Applications, 62(1), 179–207. https://doi.org/10.1007/s11042-011-0982-z

Murakami, E., & Wagner, D. P. (1999). Can using global positioning system (GPS) improve trip reporting? Transportation Research Part C: Emerging Technologies, 7(2), 149–165.

Page, S. (2004). Transport and tourism. In A companion to tourism. Blackwell Publishing, Malden, Mass.

Pearce, D. G. (1988). Tourist time-budget. Annals of Tourism Research, 15(1), 106–121.

Peng, X., & Huang, Z. (2017). A Novel Popular Tourist Attraction Discovering Approach Based on Geo-Tagged Social Media Big Data. ISPRS International Journal of Geo-Information, 6(7), 216. https://doi.org/10.3390/ijgi6070216

Plaza, B., & Haarich, S. N. (2009). Museums for urban regeneration? Exploring conditions for their effectiveness. Journal of Urban Regeneration and Renewal, 2(3), 259–271. Retrieved from https://www.ingentaconnect.com/content/hsp/jurr/2009/00000002/00000003/art00006

Quiroga, C. A., & Bullock, D. (1998). Travel time studies with global positioning and geographic information systems: an integrated methodology. Transportation Research Part C: Emerging Technologies, 6(1), 101–127.

Ratti, C., Sobolevsky, S., Calabrese, F., Andris, C., Reades, J., Martino, M.,…Strogatz, S. H. (2010). Redrawing the Map of Great Britain from a Network of Human Interactions. PLoS ONE, 5(12), e14248. https://doi.org/10.1371/journal.pone.0014248

Richards, G. (2010). Increasing the Attractiveness of Places Through Cultural Resources. Tourism Culture & Communication, 10(1), 47–58. https://doi.org/10.3727/109830410X12629765735678

Richards, G. (2011). Creativity and tourism. Annals of Tourism Research, 38(4), 1225–1253. https://doi.org/10.1016/j.annals.2011.07.008

Richards, G. (2014). Creativity and tourism in the city. Current Issues in Tourism, 17(2), 119–144. https://doi.org/10.1080/13683500.2013.783794

Ruhnau, B. (2000). Eigenvector-centrality—a node-centrality? Social Networks, 22(4), 357–365. https://doi.org/10.1016/S0378-8733(00)00031-9

Sacco, P., Ferilli, G., & Blessi, G. T. (2014). Understanding culture-led local development: A critique of alternative theoretical explanations. Urban Studies, 51(13), 2806–2821.

Schönfelder, S., Axhausen, K. W., Antille, N., & Bierlaire, M. (2002). Exploring the Potentials of Automatically Collected GPS Data for Travel Behaviour Analysis: A Swedish Data Source. Arbeitsberichte Verkehrs-Und Raumplanung, 124.

Schuessler, N., & Axhausen, K. W. (2009). Identifying trips and activities and their characteristics from GPS raw data without further information. Transportation Research Record: Journal of the Transportation Research Board., 2105, 1–28.

Scott, J. P. (2000). Social Network Analysis: A Handbook. SAGE Publications. Retrieved from https://uk.sagepub.com/en-gb/eur/the-sage-handbook-of-social-network-analysis/book232753

Shaw, G., Agarwal, S., & Bull, P. (2000). Tourism consumption and tourist behaviour: A British perspective. Tourism Geographies, 2(3), 264–289. https://doi.org/10.1080/14616680050082526

Shen, L., & Stopher, P. R. (2014). Review of GPS Travel Survey and GPS Data-Processing Methods. Transport Reviews, 34(3), 316–334.https://doi.org/10.1080/01441647.2014.903530

Shoval, N., & Isaacson, M. (2009). Tourist Mobility and Advanced Tracking Technologies. Routledge Advances in Tourism series.

Shoval, N., McKercher, B., Ng, E., & Birenboim, A. (2011). Hotel location and tourist activity in cities. Annals of Tourism Research, 38(4), 1594–1612. https://doi.org/10.1016/j.annals.2011.02.007

Silberberg, T. (1995). Cultural Tourism and Business Opportunities for Museums and Heritage Sites. Tourism Management, 16(5), 361–365. https://doi.org/10.1016/0261-5177(95)00039-Q

Soh, H., Lim, S., Zhang, T., Fu, X., Lee, G. K. K., Hung, T. G. G., … Wong, L. (2010). Weighted complex network analysis of travel routes on the Singapore public transportation system. Physica A: Statistical Mechanics and Its Applications, 389(24), 5852–5863. https://doi.org/10.1016/j.physa.2010.08.015

Stienmetz, J. L., & Fesenmaier, D. R. (2015). Estimating value in Baltimore, Maryland: An attractions network analysis. Tourism Management, 50, 238–252. https://doi.org/10.1016/j.tourman.2015.01.031

Stopher, P., Jiang, Q., & FitzGerald, C. (2005). Processing GPS data from travel surveys. In 2nd International Colloqium on the behavioural foundations of integrated land-use and transportation models: frameworks, models and applications (pp. 1–21). Toronto.

Taczanowska, K., González, L.-M., Garcia-Massó, X., Muhar, A., Brandenburg, C., & Toca-Herrera, J.-L. (2014). Evaluating the structure and use of hiking trails in recreational areas using a mixed GPS tracking and graph theory approach. Applied Geography, 55, 184–192. https://doi.org/10.1016/j.apgeog.2014.09.011

Tchetchik, a., Fleischer, A., & Shoval, N. (2009). Segmentation of Visitors to a Heritage Site Using High-resolution Time-space Data. Journal of Travel Research, 48(2), 216–229. https://doi.org/10.1177/0047287509332307

Throsby, D. (2017). Culturally sustainable development: theoretical concept or practical policy instrument? International Journal of Cultural Policy, 23(2), 133–147.

Timmermans, H., Arentze, T., & Joh, C.-H. (2002). Analysing space-time behaviour: new approaches to old problems. Progress in Human Geography, 26(2), 175–190. https://doi.org/10.1191/0309132502ph363ra

Urtasun, A., & Gutiérrez, I. (2006). Tourism agglomeration and its impact on social welfare: An empirical approach to the Spanish case. Tourism Management, 27(5), 901–912.

Wang, D., Pedreschi, D., Song, C., Giannotti, F., & Barabasi, A.-L. (2011). Human mobility, social ties, and link prediction. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’11 (p. 1100). New York, New York, USA: ACM Press. https://doi.org/10.1145/2020408.2020581

Wolf, J., Guensler, R., & Bachman, W. (2001). Elimination of the travel diary: Experiment to derive trip purpose from global positioning system travel data. Transportation Research Record: Journal of the Transportation Research Board, 1768(1), 125–134.

Xiang, L., Gao, M., & Wu, T. (2016). Extracting Stops from Noisy Trajectories: A Sequence Oriented Clustering Approach. ISPRS International Journal of Geo-Information, 5(3), 29. https://doi.org/10.3390/ijgi5030029

Yu, W., Ai, T., & Shao, S. (2015). The analysis and delimitation of Central Business District using network kernel density estimation. Journal of Transport Geography, 45, 32–47.

Yuan, J., Zheng, Y., & Xie, X. (2012). Discovering regions of different functions in a city using human mobility and POIs. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 186–194). New York, USA: ACM Press. https://doi.org/10.1145/2339530.2339561

Zhong, C., Schläpfer, M., Müller Arisona, S., Batty, M., Ratti, C., & Schmitt, G. (2017). Revealing centrality in the spatial structure of cities from human activity patterns. Urban Studies, 54(2), 437–455. https://doi.org/10.1177/0042098015601599

Zornoza Gallego, C., & Salom Carrasco, J. (2018). Geolocalized Tweets for assessing daily mobility: methodology to analyse and detect homelocation in the urban area of Valencia. Boletín de La Asociación de Geógrafos Españoles, (79). https://doi.org/10.21138/bage.2464

Enlaces refback

  • No hay ningún enlace refback.