Polos fríos en el Calar de Hernán Pelea y Cabrilla (Jaén, España), factores sinópticos y de microescala

Contenido principal del artículo

David Espín Sánchez
Carmelo Conesa García
Jorge Olcina Cantos

Resumen

Los extensos e inhóspitos calares ubicados en las Sierra de Segura y Cabrilla (divisoria entre las demarcaciones hidrográficas del Segura y Guadalquivir) presentan un estereotipo microclimático caracterizado por inviernos extremadamente fríos, con temperaturas mínimas absolutas cercanas a -30ºC en invierno, y -10ºC y -15ºC en otoño y primavera respectivamente. Los datos registrados han sido obtenidos de una red propia de termómetros registradores (datalogger) entre octubre de 2016 y febrero de 2021 (con un total de cinco inviernos de observación). A través del análisis estadístico de datos diezminutales y diarios de tres puntos de observación (Monterilla, Navalasno y Nava del Polvo), imágenes satelitales (VIIRS LST) y reanálisis mesoescalares es posible llevar a cabo la primera descripción climática del área de estudio, así como la identificación de los factores desencadenantes (sinópticos y de microescala) de las temperaturas mínimas extremas registradas, y el análisis de la tipología de los procesos de inversión térmica nocturna (ITN) y las piscinas de aire frío (CAP) generadas en el área de estudio. A pesar de que el tipo de piscina fría predominante es la de erosión turbulenta (39,0 %), los procesos de estabilidad nocturno son intensos (CINV entre 7,6 y 12,5ºC).



Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Espín Sánchez, D., Conesa García, C., & Olcina Cantos, J. (2021). Polos fríos en el Calar de Hernán Pelea y Cabrilla (Jaén, España), factores sinópticos y de microescala. Boletín De La Asociación De Geógrafos Españoles, (90). https://doi.org/10.21138/bage.3140

Bibliografía

Agencia Estatal de Meteorología (2021). Informe sobre el episodio meteorológico de fuertes nevadas y precipitaciones ocasionadas por borrasca Filomena y posterior ola de frío. Ministerio para la transición ecológica y el reto demográfico. Retrieved from https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/estudios/Informe_episodio_filomena.pdf

Arduini, G., Chemel, C., & Staquet, C. (2020). Local and non‐local controls on a persistent cold‐air pool in the Arve River Valley. Quarterly Journal of the Royal Meteorological Society, 146(731), 2497-2521. https://doi.org/10.1002/qj.3776

Asanza, F. (2018). Project AEMET miniMET. Acta de las Jornadas Científicas de la Asociación Meteorológica Española, 1(35). https://doi.org/10.30859/ameJrCn35p34

Aupí, V. (2013). El triángulo de hielo. Dobleuve Comunicación.

Barr, S., & Orgill, M. (1989). Influence of external meteorology on nocturnal valley drainage winds. Journal of Applied Meteorology, 28(6), 497-517. https://doi.org/10.1175/1520-0450(1989)028<0497:IOEMON>2.0.CO;2

Bailey, A.; Chase, T. N.; Cassano, J.J., & Noone, D. (2011). Changing Temperature Inversion Characteristics in the U.S. Southwest and Relationships to Large-Scale Atmospheric Circulation. Journal of Applied Meteorology and Climatology, 50, 1307-1323. https://doi.org/10.1175/2011JAMC2584.1

Biernat, K. A., Bosart, L. F., & Keyser, D. (2021). A climatological analysis of the linkages between tropopause polar vortices, cold pools, and cold air outbreaks over the central and eastern United States. Monthly Weather Review, 149(1), 189-206. https://doi.org/10.1175/MWR-D-20-0191.1

Clements, C.B., Whiteman, C.D., & Horel, J.D. (2003). Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah. Journal of Applied Meteorology, 42(6), 752-768. https://doi.org/10.1175/1520-0450(2003)042<0752:CSAEIA>2.0.CO;2

Colgan, S., Sun, X., & Holmes, H. (2019, December). A Review of Cold Air Pool Events in the Intermountain West using Radiosondes and the North American Mesoscale Model (NAM). In AGU Fall Meeting Abstracts (pp. A51O-2861).

Conangla, L., Cuxart, J., Jiménez, M. A., Martínez‐Villagrasa, D., Miró, J. R., Tabarelli, D., & Zardi, D. (2018). Cold‐air pool evolution in a wide Pyrenean valley. International Journal of Climatology, 38(6), 2852-2865. https://doi.org/10.1002/joc.5467

Crosman, E. T., & Horel, J. D. (2017). Large-eddy simulations of a Salt Lake Valley cold-air pool. Atmospheric Research, 193, 10-25. https://doi.org/10.1016/j.atmosres.2017.04.010

Dorninger, M., Whiteman, C.D., Bica, B., Eisenbach, S., Pospichal, B., & Steinacker, R. (2011). Meteorological events affecting cold-air pools in a small basin. Journal of Applied Meteorology and Climatology, 50(11), 2223-2234. https://doi.org/10.1175/2011JAMC2681.1

Eisenbach, S., Pospichal, B., Whiteman, C.D., Steinacker, R., & Dorninger, M. (2003). Classification of cold air pool events in the Gstettneralm, a sinkhole in the Eastern Alps. Extended Abstracts, Int. Conf. on Alpine Meteorology and MAP-Meeting, Brig, Switzerland, MeteoSwiss, Publication 66, 157–160.

Espín Sánchez, D., & Conesa García, C. (2018). Estudio comparativo del calor extremo entre el Valle del Guadalquivir y las Vegas del Segura: tendencia y cartografía de alta resolución. Revista de Estudios Andaluces, 36, 1-25. https://10.12795/rea.2018.i36.01

Flores, F., Arriagada, A., Donoso, N., Martínez, A., Viscarra, A., Falvey, M., & Schmitz, R. (2020). Investigation of a Nocturnal Cold-Air Pool in a Semiclosed Basin Located in the Atacama Desert. Journal of Applied Meteorology and Climatology, 59(12), 19531970. https://doi.org/10.1175/JAMC-D-19-0237.1

Foster, C.S., Crosman, E.T., & Horel, J.D (2017). Simulations of a Cold-Air Pool in Utah’s Salt Lake Valley: Sensitivity to Land Use and Snow Cover. Boundary-Layer Meteorol, 164, 63-87. https://doi.org/10.1007/s10546-017-0240-7

Fritts, D. C., Bizon, C., Werne, J. A., & Meyer, C. K. (2003). Layering accompanying turbulence generation due to shear instability and gravity-wave breaking. Journal Geophysical Research, 108, 8452. https://doi.org/10.1029/2002JD002406

Gómez Zotano, J., Alcántara‐Manzanares, J., Martínez‐Ibarra, E., & Olmedo‐Cobo, J. A. (2015). La sistematización del clima mediterráneo: identificación, clasificación y caracterización climática de Andalucía (España). Revista de Geografía Norte Grande, 61, 161-180. http://dx.doi.org/10.4067/S0718-34022015000200009

Gómez Zotano, J., Alcántara‐Manzanares, J., Martínez‐Ibarra, E., & Olmedo‐Cobo, J. A. (2016). Applying the technique of image classification to climate science: the case of Andalusia (Spain). Geographical Research, 54(4), 461-470 https://doi.org/10.1111/1745-5871.12180

Grudzielanek, A. M., & Fliegner, M. (2018). Cold-air pool analyses in the Funtensee basin (Berchtesgaden Alps) using thermal imaging. In EGU General Assembly Conference Abstracts (p. 9444).

Gudiksen, P. H., Leone Jr, J. M., King, C. W., Ruffieux, D., & Neff, W. D. (1992). Measurements and modeling of the effects of ambient meteorology on nocturnal drainage flows. Journal of Applied Meteorology, 31(9), 1023-1032. https://doi.org/10.1175/1520-0450(1992)031<1023:MAMOTE>2.0.CO;2

Guirguis, K., Gershunov, A., Schwartz, R., & Bennett, S. (2011). Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophysical Research Letters, 38(17). https://doi.org/10.1029/2011GL048762

Iglesias González, M., Acuña, J.L, García H., Rodríguez, A., Pajares, S., Rodríguez, J., Ruiz-Verdú, A., & Jesús Pérez H. (2018). Proyecto Jous: temperaturas mínimas absolutas en la cordillera cantábrica y su relación con las piscinas de aire frío. In XXXV Jornadas científicas de la AME-19º encuentro hispano-luso de meteorología (p. 218). https://doi.org/10.30859/ameJrCn35

Jemmett‐Smith, B., Ross, A. N., & Sheridan, P. (2018). A short climatological study of cold air pools and drainage flows in small valleys. Weather, 73(8), 256-262. https://doi.org/10.1002/wea.3281

Kassomenos, P. A., Paschalidou, A. K., Lykoudis, S., & Koletsis, I. (2014). Temperature inversion characteristics in relation to synoptic circulation above Athens, Greece. Environmental monitoring and assessment, 186(6), 3495-3502. https://doi.org/10.1007/s10661-014-3632-x

Kelsey, E. P., Cann, M. D., Lupo, K. M., & Haddad, L. J. (2019). Synoptic to Microscale Processes Affecting the Evolution of a Cold-Air Pool in a Northern New England Forested Mountain Valley. Journal of Applied Meteorology and Climatology, 58(6), 1309-1324. https://doi.org/10.1175/JAMC-D-17-0329.1

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93.

Lareau, N. P., Crosman, E., Whiteman, C. D., Horel, J. D., Hoch, S. W., Brown, W. O., & Horst, T. W. (2013). The persistent cold-air pool study. Bulletin of the American Meteorological Society, 94(1), 51-63. https://doi.org/10.1175/BAMS-D-11-00255.1

Litschauer, D. (1962). Untersuchung der Entwicklung von Kaltluftseen in Dolinen- und Beckenlagen [Investigation of the development of cool air pools in sinkholes and basins] (Doctoral dissertation, University of Vienna).

Martínez Núñez, L., Moreno, J. V., Chazarra, A., Gallego Abaroa, T., Avello, E., & Botey, M. R. (2015). Mapas de riesgo: Heladas y horas de frío en la España peninsular (periodo 2002–2012). Agencia Estatal de Meteorología (España).

McCaffrey, K., Wilczak, J. M., Bianco, L., Grimit, E., Sharp, J., Banta, R., & Muradyan, P. (2019). Identification and characterization of persistent cold pool events from temperature and wind profilers in the Columbia River Basin. Journal of Applied Meteorology and Climatology, 58(12), 2533-2551. https://doi.org/10.1175/JAMC-D-19-0046.1

Miró, J. R., Pagès, M., & Kossman, M. (2010). Cold-air pool detection tools in the Pyrenees valleys. In 14th Conference on Mountain Meteorology. Squaw Valley, CA, United States, August 30–September 3. Retrieved from https://ams.confex.com/ams/14MountMet/webprogram/Paper173620.html

Mucha, M. (2021, January 16). -35,8 grados: El récord del paleoclimatólogo Miguel y sus piscinas del frío en la España siberiana. In El Mundo. https://www.elmundo.es/cronica/2021/01/16/6001ea9ffc6c83e77e8b46ae.html

Muñoz, R. C., & Armi, L. (2020). The Raco Wind in Central Chile: A Recurring Gap Flow Interacting with a Cold Air Pool. In 19th Conference on Mountain Meteorology. Park City, UT, United States, July 13–18. Retrieved from https://ams.confex.com/ams/19Mountain/webprogram/Paper376301.html

Murthy, A. V., & Varghese, S (2004). Nocturnal Temperature Inversions Under Calm Clear Conditions. In Mechanics of the 21st century (Proceedings of the 21st International Congress of Theoretical and Applied Mechanics). Warsaw, Poland, August 15–21.

Nafría, D. A., Garrido, N., Álvarez, M. V., Cubero, D., Fernández, M., Villarino, I., & Abia, I. (2013). Atlas Agroclimático de Castilla y León. Madrid: Instituto Tecnológico Agrario de Castilla y León y Agencia Estatal de Meteorología.

Neff, W. D., & King, C. W. (1989). The accumulation and pooling of drainage flows in a large basin. Journal of Applied Meteorology, 28(6), 518-529. https://doi.org/10.1175/1520-0450(1989)028<0518:TAAPOD>2.0.CO;2

Núñez Mora, J. Á. (2010). Las nuevas redes de datos meteorológicos. Agencia Estatal de Meteorología.

OMM (2017). Manual del Sistema Mundial de Observación Volumen I – Aspectos mundiales. Organización Meteorológica Mundial.

Pasquill, F. (1961). The estimation of the dispersion of windborne material. Metereology Magazine, (90), 33.

Petkovšek, Z. (1992). Turbulent dissipation of cold air lake in a basin. Meteorology and Atmospheric Physics, 47(2-4), 237-245. https://doi.org/10.1007/BF01025620

Pfahl, S. (2014). Characterising the relationship between weather extremes in Europe and synoptic circulation features. Natural Hazards and Earth System Sciences, 14(6), 1461-1475. https://doi.org/10.5194/nhess-14-1461-2014

Pospichal, B., Eisenbach, S., Whiteman, C.D., Steinacker, R., & Dorninger, M. (2003). Observations of the cold air outflow from a basin cold pool through a low pass. In Extensive Abstract, vol. A. (pp. 153-156). International Conference on Alpine Metereology and the MAP-Meeting Brig, Switzerland, May 19–23.

Prandtl, L. (1904). Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandlungen des Dritten Internationalen Mathematiker-Kongresses in Heidelberg 1904 (pp. 484-491). Leipzig: ed. Teubner.

Renon, B. (2011). Le fabbriche naturali del freddo. Dipartimento Regionale per la Sicurezza del Territorio. ARPAV.

Sauberer, F., & Dirmhirn, I. (1956). Weitere Untersuchungen über die kaltluftansammungen in der Doline Gstettner-Alm bei Lunz im Niederösterreich (Further investigations of the cold air buildup in the Gstettner-Alm doline near Lunz in lower Austria). Wetter Leben, (8), 187-196.

Scherhag, R. (1948). Neue Methoden des Wetteranalyse und Wetterprognose. Springer Verlag Berlin, (179), 227–235.

Schmidt, E., & Beckmann, W. (1930). Das Temperatur-und Geschwindigkeitsfeld vor einer Wärme abgebenden senkrechten Platte bei natürlicher Konvektion. Technische Mechanik und Thermodynamik, 1(11), 391-406. https://doi.org/10.1007/BF02660553

Schmidt, E., & Beckmann, W. (1930). Das Temperatur-und Geschwindigkeitsfeld vor einer Wärme abgebenden senkrechten Platte bei natürlicher Konvektion. Technische Mechanik und Thermodynamik, 1(11), 391-406. https://doi.org/10.1007/BF02660553

Sun, X., Holmes, H. A., & Xiao, H. (2020). Surface Turbulent Fluxes during Persistent Cold-Air Pool Events in the Salt Lake Valley, Utah. Part II: Simulations. Journal of Applied Meteorology and Climatology, 59(6), 1029-1050. https://doi.org/10.1175/JAMC-D-19-0053.1

Vihma, T., Kilpeläinen, T., Manninen, M., Sjöblom, A., Jakobson, E., Palo, T., Jaagus, J., & Maturilli, M. (2011). Characteristics of Temperature and Humidity Inversions and Low-Level Jets over Svalbard Fjords in Spring. Advances in Meteorology. https://doi.org/10.1155/2011/486807

Vitasse, Y., Klein, G., Kirchner, J. W., & Rebetez, M. (2017). Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland. Theoretical and Applied Climatology, 130(3), 1073-1083. https://doi.org/10.1007/s00704-016-1944-1

Vrhovec, T., & Hrabar, A. (1996). Numerical simulations of dissipation of dry temperature inversions in basins. Geofizika, 13(1), 81-96. https://hrcak.srce.hr/18774

Whiteman, C. D., & McKee, T. B. (1982). Breakup of temperature inversions in deep mountain valleys: Part II. Thermodynamic model. Journal of Applied Meteorology, 21(3), 290-302. https://doi.org/10.1175/1520-0450(1982)021<0290:BOTIID>2.0.CO;2

Whiteman, C.D., (1986). Temperature inversion buildup in Colorado’s Eagle Calley. Meteorology and Atmospheric Physics, 35(4), 220-226. https://doi.org/10.1007/BF01041814

Whiteman, C.D., & Barr, S. (1986). Atmospheric mass transport by a long-valley wind systems in a deep Colorado valley. Journal of Climate and Applied Meteorology, 25(9), 1205-1212. https://doi.org/10.1175/1520-0450(1986)025<1205AMTBAV>2.0.CO;2

Whiteman, C.D., Bian, X., & Zhong, S. (1997): Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. Journal of Applied Meteorology, 36(10): 1363-1376. https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2

Whiteman, C. D. (2000). Mountain meteorology: fundamentals and applications. Oxford University Press.

Whiteman, C.D., Zhong, S., Shaw, W.J., Hubbe, J.M., Bian, X., & Mittelstadt, J. (2001). Cold pools in the Columbia Basin. Weather and Forecasting, 16(4). 432-447. https://doiorg/10.1175/1520-0434(2001)016<0432:CPITCB>2.0.CO;2

Whiteman, C.D., Pospichal, B., Eisenbach, S., Weihs, P., Clements, C.B., Steinacker, R., & Dorninger, M (2004a). Inversion breakup in small Rocky Mountain and Alpine basins. Journal of Applied Meteorology, 43(8), 1069-1082. https://doi.org/10.1175/1520-0450(2004)043<1069:IBISRM>2.0.CO;2

Whiteman, C.D., Haiden, T., Pospichal, B., Eisenbach, S. & Steinacker, R. (2004b). Minimum temperatures, diurnal temperature ranges, and temperature inversions in limestone sinkholes of different sizes and shapes. Journal of Applied Meteorology, 43(8), 1224-1236. https://doi.org/10.1175/1520-0450(2004)043<1224:MTDTRA>2.0.CO;2

Whiteman, C.D., Hoch, S.W., Hahnenberge R.M., Muschinski, A., Hohreiter, V., Behn, M., & Clements, C.B. (2008). METCRAX 2006: Meteorological experiments in arizona’s meteor crater. Bulletin of the American Meteorological Society, 89(11), 1665-1680. https://doi.org/10.1175/2008BAMS2574.1

Zängl, G. (2005). Formation of extreme cold-air pools in elevated sinkholes: An idealized numerical process study. Monthly Weather Review, 133(4), 925-941. https://doi.org/10.1175/MWR2895.1

Zhong, S., Bian, X., & Whiteman, C. D. (2003). Time scale for cold-air pool breakup by turbulent erosion. Meteorologische Zeitschrift, 12(4), 229-233. https://doi.org/10.1127/0941-2948/2003/0012-0231

Zhong, S., Whiteman, C. D., Bian, X., Shaw, W. J., & Hubbe, J. M. (2001). Meteorological processes affecting the evolution of a wintertime cold air pool in the Columbia basin. Monthly Weather Review, 129(10), 2600-2613. https://doi.org/10.1175/1520-0493(2001)129<2600:MPATEO>2.0.CO;2

Zhou, W., Chan, J. C., Chen, W., Ling, J., Pinto, J. G., & Shao, Y. (2009). Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Monthly Weather Review, 137(11), 3978-3991. https://doi.org/10.1175/2009MWR2952.1