El sistema médico de emergencias de Madrid a prueba: análisis del rendimiento espaciotemporal del SAMUR-PC en los primeros meses de la nueva normalidad postCOVID-19

Contenido principal del artículo

Onel Pérez-Fernández
Borja Moya-Gómez

Resumen

Quienes requieren de atención sanitaria de emergencia no pueden esperar. Las ambulancias deben llegar al lugar del suceso lo más rápido posible. Las ambulancias suelen estar asignadas a bases, que se distribuyen por toda la ciudad para minimizar el tiempo de llegada al suceso. Sin embargo, la distribución espacial de los sucesos cambia a lo largo del día, debido al ritmo y uso que las personas hacen de la ciudad. Este artículo evalúa, por medio de modelos de localización-asignación, el desempeño espaciotemporal del SAMUR-PC, el Servicio Médico de Emergencias de Madrid (España) en dos escenarios diferenciados, antes de la pandemia de la COVID-19 y durante los primeros meses de la nueva normalidad. Los resultados muestran que el sistema respondió relativamente bien al cambio de los patrones de los sucesos debidos a la pandemia, aunque hubiese sido necesario hacer algunas intervenciones para garantizar el mismo servicio que antes de la crisis epidemiológica.



Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Pérez-Fernández, O. ., & Moya-Gómez, B. (2023). El sistema médico de emergencias de Madrid a prueba: análisis del rendimiento espaciotemporal del SAMUR-PC en los primeros meses de la nueva normalidad postCOVID-19. Boletín De La Asociación De Geógrafos Españoles, (96). https://doi.org/10.21138/bage.3247

Bibliografía

Abdelkarim, A. (2019). Integration of location-allocation and accessibility models in GIS to improve urban planning for health services in Al-Madinah Al-Munawwarah , Saudi Arabia. Journal of Geographic Information System, 11(6), 633-662. https://doi.org/10.4236/jgis.2019.116039

Al-Sabbagh, T.A. (2020). GIS location-allocation models in improving accessibility to primary schools in Mansura city-Egypt. GeoJournal, 5. https://doi.org/10.1007/s10708-020-10290-5

Arias-Molinares, D., Romanillos, G., García-Palomares, J.C., & Gutiérrez, J. (2021). Exploring the spatio-temporal dynamics of moped-style scooter sharing services in urban areas. Journal of Transport Geography, 96(July). https://doi.org/10.1016/j.jtrangeo.2021.103193

Ayuntamiento de Madrid (n.d.). Salir por Madrid. https://www.esmadrid.com/zonas-de-marcha-en-madrid

Ayuntamiento de Madrid (2015, July 7). La población flotante de la ciudad de Madrid. Barómetro de la economía de la ciudad de Madrid. https://www.madrid.es/UnidadesDescentralizadas/UDCObservEconomico/BarometroEconomia/2015/Tercer trimestre/Ficheros/Monografico.pdf

Ayuntamiento de Madrid (2020a). Oficina de apoyo a las áreas de actividad económica. https://economia.madrid.es/FWProjects/economia/contenidos/Ficheros/UR5463-SR-UR-Distritos_20200428.pdf

Ayuntamiento de Madrid (2020b, September 2). Estado de la movilidad de la ciudad de Madrid. https://transparencia.madrid.es/FWProjects/transparencia/Movilidad/Trafico/InformesMovilidad/Ficheros/InformeMovilidad2020.pdf

Ayuntamiento de Madrid. (2020c, September 5). Accidentes de tráfico. Accidentes y víctimas de tráfico urbano por Día de la semana y Hora de ocurrencia. https://www.madrid.es/portales/munimadrid/es/Inicio/El-Ayuntamiento/Estadistica/Areas-de-informacion-estadistica/Trafico-transportes-y-comunicaciones/Accidentes-de-trafico/Accidentes-de-trafico/?vgnextfmt=default&vgnextoid=d3a67e6f34969210VgnVCM2000000c20

Azarmand, Z., & Neishabouri, E. (2009). Location allocation problem. In H. Hekmatfar & R. Farahani (Eds.), Facility Location: Concepts, Models, Algorithms and Case Studies, Contributions to Management Science (pp. 93-101). https://doi.org/10.1007/978-3-7908-2151-2

Azizan, M.H., Lim, C.S., Hatta, W.A., Lutfi, W.M., & Gan, L.C. (2012). Application of OpenStreetMap data in ambulance location problem. In Proceedings - 2012 4th International Conference on Computational Intelligence, Communication Systems and Networks, CICSyN 2012 (pp. 321-325). https://doi.org/10.1109/CICSyN.2012.66

Barros, C., Moya-Gómez, B., & Gutiérrez, J. (2019). Using geotagged photographs and GPS tracks from social networks to analyse visitor behaviour in national parks. Current Issues in Tourism, 0(0), 1-20. https://doi.org/10.1080/13683500.2019.1619674

Bolouri, S., Vafaeinejad, A., Alesheikh, A.A., & Aghamohammadi, H. (2018). The ordered capacitated multi-objective location-allocation problem for fire stations using spatial optimization. ISPRS International Journal of Geo-Information, 7(2). https://doi.org/10.3390/ijgi7020044

Bolouri, S., Vafaeinejad, A., Alesheikh, A., & Aghamohammadi, H. (2020). Minimizing response time to accidents in big cities: a two ranked level model for allocating fire stations. Arabian Journal of Geosciences, 13(16). https://doi.org/10.1007/s12517-020-05728-6

Buzai, G., & Baxandale, C. (1995). Modelos de localización-asignación aplicados a servicios públicos urbanos: análisis espacial de centros de atención primaria de Salud (CAPS) en la ciudad e Luján, Argentina. Cuadernos de Geografía | Revista Colombiana de Geografía, 20(2), 109-123. https://doi.org/http://www.uacm.kirj.redalyc.redalyc.org/articulo.oa?id=281821988009

Church, R., & ReVelle, C. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32(1), 101-118. https://doi.org/10.1007/BF01942293

Comunidad de Madrid. (2019, June 5). Jornada Escolar. https://www.comunidad.madrid/servicios/educacion/jornada-escolar#:~:text

Condeço-Melhorado, A., Mohino, I., Moya-Gómez, B., & Palomares-García, J. C. (2020). The Rio Olympic Games : A Look into City Dynamics through the Lens of Twitter Data. Sustainability, 12(7003), 16. https://doi.org/10.3390/su12177003

De Cáceres, A.M., & De la Hoz, D. (2009). Efectos sobre la movilidad dinámica territorial de Madrid. Urban, 1(14), 58-71. http://polired.upm.es/index.php/urban/article/view/307/309

Dibene, J. C., Maldonado, Y., Vera, C., de Oliveira, M., Trujillo, L., & Schütze, O. (2017). Optimizing the location of ambulances in Tijuana, Mexico. Computers in Biology and Medicine, 80, 107-115. https://doi.org/10.1016/j.compbiomed.2016.11.016

Dirección General de tráfico (2020, September 4). Estadísticas de tráfico. Anuario estadístico del 2020. https://www.dgt.es/menusecundario/dgt-en-cifras/dgt-en-cifras-resultados/dgt-en-cifras-detalle/?id=00819

Eaton, D.J., Daskin, M.S., Simmons, D., Bulloch, B., & Jansma, G. (1985). Determining emergency medical service vehicle deployment in Austin, Texas. Interfaces, 15(1), 96-108. https://doi.org/10.1287/inte.15.1.96

Frade, I., & Ribeiro, A. (2015). Bike-sharing stations: A maximal covering location approach. Transportation Research Part A: Policy and Practice, 82, 216-227. https://doi.org/10.1016/j.tra.2015.09.014

García-Palomares, J.C., Gutierrez-Puebla, J., & Mínguez, C. (2015). Identi fi cation of tourist hot spots based on social networks : A comparative analysis of European metropolises using photo-sharing services and GIS. Applied Geography, 63, 408-417. https://doi.org/10.1016/j.apgeog.2015.08.002

Glodeanu, A., Gullón, P., & Bilal, U. (2021). Social inequalities in mobility during and following the COVID-19 associated lockdown of the Madrid metropolitan area in Spain. Health & Place, 70, 102580. https://doi.org/https://doi.org/10.1016/j.healthplace.2021.102580

Google (2020, September 2). Informes de Movilidad Local. Informe de Movilidad Local sobre el COVID-19. https://www.gstatic.com/covid19/mobility/2022-08-28_ES_Community_of_Madrid_Mobility_Report_es.pdf

GoogleMap. (2022, September 1). Google. https://www.google.com/maps/@40.3965955,-3.6048402,12.08z/data=!5m1!1e1

Hunter, R.F., Garcia, L., de Sa, T.H., Zapata-Diomedi, B., Millett, C., Woodcock, J., Pentland, A. ’Sandy’, & Moro, E. (2021). Effect of COVID-19 response policies on walking behavior in US cities. Nature Communications, 12, (1). https://doi.org/10.1038/s41467-021-23937-9

Instituto Nacional de Estadística de España (2020, September 5). Estadística experimental. Estudios de movilidad 2020-2021. https://www.ine.es/experimental/movilidad/experimental_em4.htm#tablas_resultados

Jia, H., Ordóñez, F., & Dessouky, M. (2007). A modeling framework for facility location of medical services for large-scale emergencies. IIE Transactions (Institute of Industrial Engineers), 39(1), 41-55. https://doi.org/10.1080/07408170500539113

Lasa, N., Gómez, J., Padilla, J., García, J., & Gorosiaga A.S.M. (2020). Las consecuencias psicológicas de la Covid-19 y el Confinamiento. https://consaludmental.org/centro-documentacion/consecuencias-psicologicas-covid19-confinamiento/

Ledesma, L., & Zurita, J. (1995). Localizacion de equipamientos deseables los hospitales de la provincia Del Chaco. In J. Bosque Sendra & A. Moreno Jiménez (Eds.), Localización de equipamientos y sig (pp. 229-248). RAMA.

Li, X., Zhao, Z., Zhu, X., & Wyatt, T. (2011). Covering models and optimization techniques for emergency response facility location and planning: A review. Mathematical Methods of Operations Research, 74(3), 281-310. https://doi.org/10.1007/s00186-011-0363-4

Lobo, A.V. (1984). Movilidad espacial en Madrid. Anales de Geografia de la Universidad Complutense, 4, 208-209.

Mayo Clinic (2022, March 1). Actividades seguras al aire libre durante la pandemia de COVID-19. https://www.mayoclinic.org/es-es/diseases-conditions/coronavirus/in-depth/safe-activities-during-covid19/art-20489385

McKenzie, H. (2022, May 9). Hexagons for Location Intelligence: Why, When & How? CARTO Blog. https://carto.com/blog/hexagons-for-location-intelligence/

Ministerio de Sanidad (2020, November 7). Actualización no 282. Enfermedad por el coronavirus (COVID-19). https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/Actualizacion_282_COVID-19.pdf

Ministerio de transportes movilidad y agenda urbana (2020, September 2). Resumen de movilidad. https://www.mitma.gob.es/ministerio/covid-19/evolucion-movilidad-big-data/movilidad-nacional

Moovit (2020, November 7). Impact of coronavirus on public transit usage. https://moovitapp.com/insights/es/Moovit_Insights_Índice_de_Transporte_Público-countries

Moya-Gómez, B., & García-Palomares, J.C. (2017). The impacts of congestion on automobile accessibility. What happens in large European cities? Journal of Transport Geography, 62, 148-159. https://doi.org/10.1016/j.jtrangeo.2017.05.014

Namazian, Z., & Roghanian, E. (2019). A decision problem for bank branch site selection: A GIS Mapping perspective with Maximal Covering Location Problem: A case study of Isfahan, Iran. Computers and Society. http://arxiv.org/abs/1909.00130

Nogueira, L.C., Pinto, L.R., & Silva, P.M.S. (2016). Reducing Emergency Medical Service response time via the reallocation of ambulance bases. Health Care Management Science, 19(1), 31-42. https://doi.org/10.1007/s10729-014-9280-4

Nommon (2021, September 5). Análisis de la movilidad en España tras el fin del estado de alarma. https://www.nommon.es/es/noticias/page/3/

OMS (2008). Emergency medical services systems in the European Union. https://www.euro.who.int/__data/assets/pdf_file/0016/114406/E92038.pdf

Páez, A., Scott, D.M., & Morency, C. (2012). Measuring accessibility: Positive and normative implementations of various accessibility indicators. Journal of Transport Geography, 25, 141-153. https://doi.org/10.1016/j.jtrangeo.2012.03.016

Pons, P.T., Haukoos, J.S., Bludworth, W., Cribley, T., Pons, K.A., & Markovchick, V.J. (2005). Paramedic response time: Does it affect patient survival? Academic Emergency Medicine, 12(7), 594-600. https://doi.org/10.1197/j.aem.2005.02.013

Pons, P.T., & Markovchick, V.J. (2002). Eight minutes or less: Does the ambulance response time guideline impact trauma patient outcome? Journal of Emergency Medicine, 23(1), 43-48. https://doi.org/10.1016/S0736-4679(02)00460-2

Rajagopalan, H.K., Saydam, C., & Xiao, J. (2008). A multiperiod set covering location model for dynamic redeployment of ambulances. Computers and Operations Research, 35(3), 814-826. https://doi.org/10.1016/j.cor.2006.04.003

Romanillos, G., García-Palomares, J.C., Moya-Gómez, B., Gutiérrez, J., Torres, J., López, M., Cantú-Ros, O.G., & Herranz, R. (2021). The city turned off: Urban dynamics during the COVID-19 pandemic based on mobile phone data. Applied Geography, 134. https://doi.org/10.1016/j.apgeog.2021.102524

Salas-Olmedo, M.H., Moya-Gómez, B., García-Palomares, J.C., & Gutiérrez, J. (2018). Tourists’ digital footprint in cities: Comparing Big Data sources. Tourism Management, 66, 13-25. https://doi.org/10.1016/j.tourman.2017.11.001

SAMUR (2020, April 15). Parque de vehículos. Ambulancias. https://www.madrid.es/portales/munimadrid/es/Samur/SAMUR-Proteccion-Civil/?vgnextfmt=default&vgnextoid=c88fcdb1bfffa010VgnVCM100000d90ca8c0RCRD&vgnextchannel=84516c77e7d2f010VgnVCM1000000b205a0aRCRD&idCapitulo=10269430&page=1

Schmid, V. (2012). Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. European Journal of Operational Research, 219(3), 611-621. https://doi.org/10.1016/j.ejor.2011.10.043

Serra, D., & Marianov, V. (2002). New trends in public facility location modeling (UPF Economics and Business Working Paper No. 755).. https://doi.org/10.2139/ssrn.563843

Strohmandl, J., Tomek, M., Molnár, V., Jakubčeková, J. M., Fedorko, G., & Maláková, S. (2021). Using travel times for optimization numbers of medical rescue service points—case study from Slovakia. Sustainability, 13(1), 1-12. https://doi.org/10.3390/su13010207

Sun, C.H., Cheng, C.Y., Wang, C.H., & Hsiao, P.H. (2020). Dynamic floating stations model for emergency medical services with a consideration of traffic data. ISPRS International Journal of Geo-Information, 9(5). https://doi.org/10.3390/ijgi9050336

Talavera-Garcia, R., & Pérez-Campaña, R. (2021). Applying a pedestrian level of service in the context of social distancing: The case of the city of madrid. International Journal of Environmental Research and Public Health, 18(21). https://doi.org/10.3390/ijerph182111037

Tassone, J., & Choudhury, S. (2020). A comprehensive survey on the ambulance routing and location problems. Artificial Intelligence. http://arxiv.org/abs/2001.05288

TC Group Solutions (2021). Informe retail intelligence 2021. https://www.tcgroupsolutions.com/recurso/informe-retail-intelligence-2021/

TomTom (2020, November 7). Clasificación del índice de tráfico. https://www.tomtom.com/en_gb/traffic-index/madrid-traffic/

Villarreal, B., Granda-Gutierrez, E.M.A., Bastidas, S.L.A.C., & Montalvo, A. (2017). Decreasing ambulance response time through an optimal base location. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2017(JUL), 422-429. https://pure.udem.edu.mx/en/publications/decreasing-ambulance-response-time-through-an-optimal-base-locati

Wang, W., Xu, Z., Sun, D., & Lan, T. (2021). Spatial optimization of mega-city fire stations based on multi-source geospatial data: A case study in beijing. ISPRS International Journal of Geo-Information, 10(5). https://doi.org/10.3390/ijgi10050282

Wondwossen, M., & Bedasa, A. (2019). Location allocation analysis for urban public services ssing GIS techniques : A case of primary schools in Yeka sub-city, Addis, Ethiopia. American Journal of Geographic Information System, 8(1), 26-38. https://doi.org/10.5923/j.ajgis.20190801.03

Yin, P., & Mu, L. (2012). Modular capacitated maximal covering location problem for the optimal siting of emergency vehicles. Applied Geography, 34, 247-254. https://doi.org/10.1016/j.apgeog.2011.11.013

Yu, W., Guan, M., & Chen, Y. (2020). Fire stations siting with multiple objectives and geospatial big data. Earth Science Informatics. https://doi.org/10.1007/s12145-020-00539-5

Zhou, L., Wang, S., & Xu, Z. (2020). A multi-factor spatial optimization approach for emergency medical facilities in Beijing. ISPRS International Journal of Geo-Information, 9(6). https://doi.org/10.3390/ijgi9060361

Zhu, Y., Du, Q., Tian, F., Ren, F., Liang, S., & Chen, Y. (2016). Location optimization using a hierarchical location-allocation model for trauma centers in Shenzhen, China. ISPRS International Journal of Geo-Information, 5(10), 190. https://doi.org/10.3390/ijgi5100190