El empleo de metodologías de código abierto para las investigaciones costeras: comparativa de las técnicas de detección de cambios
Contenido principal del artículo
Resumen
Coastal studies have a great relevance historically. This increase in the last with the new technologies and the possible global change impact. In this context, open-source tools represent a key element in these investigations. The present project analyzes the advantages and problems of open-source tools for estimate coastal variations and volumetric changes. For this purpose, a small sector of the Galician coast was used as an example. The open-source approaches have produced similar results to those obtained with proprietary software (ratios ≥ 0.97). In some cases, these methods improve processing times and allowing to users better possibilities for customization and decision-making.
Descargas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Bibliografía
Anderson, S. W. (2019). Uncertainty in quantitative analyses of topographic change: error propagation and the role of thresholding. Earth Surface Processes and Landforms, 44(5), 1015-1033. https://doi.org/10.1002/esp.4551
Aoki, H., & Matsukura, Y. (2007). A new technique for non-destructive field measurement of rock-surface strength: an application of the Equotip hardness tester to weathering studies. Earth Surface Processes and Landforms, 32(12), 1759-1769. https://doi.org/10.1002/esp.1492
Blanco-Chao, R., Cajade-Pascual, D., & Costa-Casais, M. (2020). Rotation, sedimentary deficit and erosion of a trailing spit inside ria of Arousa (NW Spain). Science of The Total Environment, 749(April 2021), 141480. https://doi.org/10.1016/j.scitotenv.2020.141480
Blanco-Chao, R., Costa-Casais, M., Cajade-Pascual, D., & Gómez-Rey, G. (2019). Coastal Retreat and Sedimentation during the Last 3000 Years. Atlantic Coast of NW Spain. Journal of Marine Science and Engineering, 7(10), 331. https://doi.org/10.3390/jmse7100331
Burningham, H., & Fernandez-Nunez, M. (2020). Shoreline change analysis. In D.W.T. Jackson & A.D. Short (Eds.), Sandy Beach Morphodynamics (pp. 439-460). Elsevier.
Cabezas-Rabadán, C., Pardo-Pascual, J.E., Palomar-Vázquez, J., Ferreira, Ó., & Costas, S. (2020). Satellite Derived Shorelines at an Exposed Meso-tidal Beach. Journal of Coastal Research, 95(sp1), 1027. https://doi.org/10.2112/si95-200.1
Castedo, R., de la Vega-Panizo, R., Fernández-Hernández, M., & Paredes, C. (2015). Measurement of historical cliff-top changes and estimation of future trends using GIS data between Bridlington and Hornsea - Holderness Coast (UK). Geomorphology, 230, 146-160. https://doi.org/10.1016/j.geomorph.2014.11.013
Castelle, B., Marieu, V., Bujan, S., Splinter, K. D., Robinet, A., Sénéchal, N., & Ferreira, S. (2015). Impact of the winter 2013-2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology, 238, 135-148. https://doi.org/10.1016/j.geomorph.2015.03.006
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., & Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015
Cook, K.L. (2017). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278, 195-208. https://doi.org/10.1016/j.geomorph.2016.11.009
Crowell, M., Edelman, S., Coulton, K., & McAfee, S. (2007). How many people live in coastal areas? Journal of Coastal Research, 23(5), 1-4. https://doi.org/10.2112/07A-0017.1
Del Río, L., & Gracia, F. J. (2013). Error determination in the photogrammetric assessment of shoreline changes. Natural Hazards, 65(3), 2385-2397. https://doi.org/10.1007/s11069-012-0407-y
Engdahl, M., Minchella, A., Marinkovic, P., Veci, L., & Lu, J. (2012). NEST: An esa open source Toolbox for scientific exploitation of SAR data. 2012 IEEE International Geoscience and Remote Sensing Symposium, 5322-5324. https://doi.org/10.1109/IGARSS.2012.6352406
Feal-Pérez, A., & Blanco-Chao, R. (2013). Characterization of abrasion surfaces in rock shore environments of NW Spain. Geo-Marine Letters, 33(2–3), 173-181. https://doi.org/10.1007/s00367-012-0300-4
Garrote, J., Díaz-Álvarez, A., Nganhane, H., & Garzón Heydt, G. (2018). The Severe 2013–14 Winter Storms in the Historical Evolution of Cantabrian (Northern Spain) Beach-Dune Systems. Geosciences, 8(12), 459. https://doi.org/10.3390/geosciences8120459
Gómez-Pazo, A. (2022). Aplicación de novas tecnoloxías no estudo da costa de Galicia dirixidas a unha nova xestión no contexto do cambio global. Universidade de Santiago de Compostela.
Gómez-Pazo, A., Payo, A., Paz-Delgado, M.V., & Delgadillo-Calzadilla, M.A. (2022). Open Digital Shoreline Analysis System: ODSAS v1.0. Journal of Marine Science and Engineering, 10(1), 26. https://doi.org/10.3390/jmse10010026
Gómez-Pazo, A., & Pérez-Alberti, A. (2021). The Use of UAVs for the Characterization and Analysis of Rocky Coasts. Drones, 5(1), 23. https://doi.org/10.3390/drones5010023
Gómez-Pazo, A., Perez-Alberti, A., & Otero Pérez, X.L. (2019). Recent Evolution (1956–2017) of Rodas Beach on the Cíes Islands, Galicia, NW Spain. Journal of Marine Science and Engineering, 7(125). https://doi.org/10.3390/jmse7050125
Gómez-Pazo, A., Pérez-Alberti, A., & Trenhaile, A. (2021a). High resolution mapping and analysis of shore platform morphology in Galicia, northwestern Spain. Marine Geology, 436(March), 106471. https://doi.org/10.1016/j.margeo.2021.106471
Gómez-Pazo, A., Pérez-Alberti, A., & Trenhaile, A. (2021b). Tracking clast mobility using RFID sensors on a boulder beach in Galicia, NW Spain. Geomorphology, 373, 107514. https://doi.org/10.1016/j.geomorph.2020.107514
Gómez-Pazo, A., Pérez-Alberti, A., & Trenhaile, A. (2021c). Tracking the behavior of rocky coastal cliffs in northwestern Spain. Environmental Earth Sciences, 80(22), 757. https://doi.org/10.1007/s12665-021-09929-4
Gómez-Pazo, A., Pérez‐Alberti, A., & Trenhaile, A. (2019). Recording inter‐annual changes on a boulder beach in Galicia, NW Spain using an unmanned aerial vehicle. Earth Surface Processes and Landforms, 44(5), 1004-1014. https://doi.org/10.1002/esp.4549
Gonçalves, G. R., Pérez, J. A., & Duarte, J. (2018). Accuracy and effectiveness of low cost UASs and open source photogrammetric software for foredunes mapping. International Journal of Remote Sensing, 39(15-16), 5059-5077. https://doi.org/10.1080/01431161.2018.1446568
González-Villanueva, S., Costas, S., Pérez-Arluecea, M., Alejo, I., & Rial, F. (2011). Evolución del sector dunar sur del complejo de Corrubedo. Geogaceta, 50(1), 177-180. http://www.sociedadgeologica.es/archivos/geogacetas/geo50/art42.pdf
Hastewell, L., Inkpen, R., Bray, M., & Schaefer, M. (2020). Quantification of contemporary storm-induced boulder transport on an intertidal shore platform using radio frequency identification technology. Earth Surface Processes and Landforms, 45(7), 1601-1621. https://doi.org/10.1002/esp.4834
Hastewell, L. J., Schaefer, M., Bray, M., & Inkpen, R. (2019). Intertidal boulder transport: A proposed methodology adopting Radio Frequency Identification (RFID) technology to quantify storm induced boulder mobility. Earth Surface Processes and Landforms, 44(3), 681-698. https://doi.org/10.1002/esp.4523
Himmelstoss, E.A., Henderson, R.E., Kratzmann, M.G., & Farris, A.S. (2018). Digital Shoreline Analysis System (DSAS) version 5.0 user guide. In Open-File Report. https://doi.org/10.3133/ofr20181179
Hoffmeister, D., Curdt, C., & Bareth, G. (2020). Monitoring the sedimentary budget and dislocated boulders in western Greece – results since 2008. Sedimentology, 67(3), 1411-1430. https://doi.org/10.1111/sed.12723
Horacio, J., Muñoz-Narciso, E., Trenhaile, A.S., & Pérez-Alberti, A. (2019). Remote sensing monitoring of a coastal-valley earthflow in northwestern Galicia, Spain. Catena, 178(March), 276-287. https://doi.org/10.1016/j.catena.2019.03.028
IGN. (2022). Instituto Geográfico Nacional. https://www.centrodedescargas.cnig.es/
Jackson, C.W., Alexander, C.R., & Bush, D.M. (2012). Application of the AMBUR R package for spatio-temporal analysis of shoreline change: Jekyll Island, Georgia, USA. Computers & Geosciences, 41, 199-207. https://doi.org/10.1016/j.cageo.2011.08.009
Jackson, D.W.T., Costas, S., González-Villanueva, R., & Cooper, A. (2019). A global ‘greening’ of coastal dunes: An integrated consequence of climate change? Global and Planetary Change, 182(June), 103026. https://doi.org/10.1016/j.gloplacha.2019.103026
Kuhn, D., & Prüfer, S. (2014). Coastal cliff monitoring and analysis of mass wasting processes with the application of terrestrial laser scanning: A case study of Rügen, Germany. Geomorphology, 213, 153-165. https://doi.org/10.1016/j.geomorph.2014.01.005
Long, N., Millescamps, B., Guillot, B., Pouget, F., & Bertin, X. (2016). Monitoring the topography of a dynamic tidal inlet using UAV imagery. Remote Sensing, 8(5). https://doi.org/10.3390/rs8050387
Lyman, T.P., Elsmore, K., Gaylord, B., Byrnes, J.E.K., & Miller, L.P. (2020). Open Wave Height Logger: An open source pressure sensor data logger for wave measurement. Limnology and Oceanography: Methods, 18(7), 335-345. https://doi.org/10.1002/lom3.10370
Manno, G., Lo Re, C., & Ciraolo, G. (2017). Uncertainties in shoreline position analysis: The role of run-up and tide in a gentle slope beach. Ocean Science, 13(5), 661-671. https://doi.org/10.5194/os-13-661-2017
Masselink, G., Castelle, B., Scott, T., Dodet, G., Suanez, S., Jackson, D., & Floc’h, F. (2016). Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophysical Research Letters, 43, 2135-2143. https://doi.org/10.1002/2015GL067492
Muñoz Narciso, E., García, H., Sierra Pernas, C., & Pérez-Alberti, A. (2017). Study of geomorphological changes by high quality DEMs, obtained from UAVs-Structure from Motion in highest continental cliffs of Europe: A Capelada (Galicia, Spain). Geophysical Research Abstracts EGU General Assembly, 19(November), 2017-2692. https://doi.org/10.13140/RG.2.2.24076.00647
Nagle-McNaughton, T., & Cox, R. (2020). Measuring change using quantitative differencing of repeat structure-from-motion photogrammetry: The effect of storms on coastal boulder deposits. Remote Sensing, 12(1). https://doi.org/10.3390/rs12010042
Narra, P., Coelho, C., Sancho, F., & Palalane, J. (2017). CERA: An open-source tool for coastal erosion risk assessment. Ocean and Coastal Management, 142, 1-14. https://doi.org/10.1016/j.ocecoaman.2017.03.013
Naylor, L. A., Stephenson, W.J., & Trenhaile, A. S. (2010). Rock coast geomorphology: Recent advances and future research directions. Geomorphology, 114(1-2), 3-11. https://doi.org/10.1016/j.geomorph.2009.02.004
Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding - A global assessment. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0118571
Pardo-Pascual, J. E., Sánchez-García, E., Almonacid-Caballer, J., Palomar-Vázquez, J. M., de los Santos, E. P., Fernández-Sarría, A., & Balaguer-Beser, Á. (2018). Assessing the accuracy of automatically extracted shorelines on microtidal beaches from landsat 7, landsat 8 and sentinel-2 imagery. Remote Sensing, 10(2), 1-20. https://doi.org/10.3390/rs10020326
Payo, A., Wallis, H., Ellis, M. A., Barkwith, A., & Poate, T. (2020). Application of portable streamer traps for obtaining point measurements of total longshore sediment transport rates in mixed sand and gravel beaches. Coastal Engineering, 156(September 2019), 103580. https://doi.org/10.1016/j.coastaleng.2019.103580
Paz-Delgado, M. V., Payo, A., Gómez-Pazo, A., Beck, A.-L., & Savastano, S. (2022). Shoreline Change from Optical and Sar Satellite Imagery at Macro-Tidal Estuarine, Cliffed Open-Coast and Gravel Pock-ET-Beach Environments. Journal of Marine Science and Engineering, 10, 561. https://doi.org/10.3390/jmse10050561
Pérez-Alberti, A., Gómez-Pazo, A., & Otero, X. L. (2020). Natural and Anthropogenic Variations in the Large Shifting Dune in the Corrubedo Natural Park, NW Iberian Peninsula (1956–2017). Applied Sciences, 11(1), 34. https://doi.org/10.3390/app11010034
Pérez‐Alberti, A., & Trenhaile, A.S. (2015). An initial evaluation of drone‐based monitoring of boulder beaches in Galicia, north‐western Spain. Earth Surface Processes and Landforms, 40(1), 105-111. https://doi.org/10.1002/esp.3654
Puertos del Estado. (2022). Puertos del Estado. http://www.puertos.es/es-es
R Core Team. (2020). R: A Language and Environment for Statistical Computing. https://www.r-project.org/
Stephenson, W.J., & Finlayson, B.L. (2009). Measuring erosion with the micro-erosion meter-Contributions to understanding landform evolution. Earth-Science Reviews, 95(1-2), 53-62. https://doi.org/10.1016/j.earscirev.2009.03.006
Sytnik, O., Del Río, L., Greggio, N., & Bonetti, J. (2018). Historical shoreline trend analysis and drivers of coastal change along the Ravenna coast, NE Adriatic. Environmental Earth Sciences, 77(23), 779. https://doi.org/10.1007/s12665-018-7963-8
Viles, H., Goudie, A., Grab, S., & Lalley, J. (2011). The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: A comparative analysis. Earth Surface Processes and Landforms, 36(3), 320-333. https://doi.org/10.1002/esp.2040
Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., & Turner, I. L. (2019). CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling and Software, 122. https://doi.org/10.1016/j.envsoft.2019.104528
Wheaton, J. M., Brasington, J., Darby, S. E., & Sear, D. A. (2010). Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surface Processes and Landforms, 35(2), 136-156. https://doi.org/10.1002/esp.1886