La dimensión geográfica de las invasiones biológicas en el Antropoceno: el caso de Xylella fastidiosa

Contenido principal del artículo

Resumen

Xylella fastidiosa es una bacteria potencialmente dañina para un gran número de cultivos leñosos y especies arbóreas, y está considerada una de las bacterias fitopatógenas más peligrosas del mundo. En este artículo, combinamos modelos de nicho ecológico para estimar la distribución potencial global de X. fastidiosa y, complementariamente, técnicas de evaluación multicriterio para estimar regionalmente la exposición de la península Ibérica e islas Baleares a la entrada y difusión del patógeno. A nivel global, nuestros modelos estimaron una distribución potencial de X. fastidiosa con un amplio radio potencial de expansión en climas templados (Grupo C, según la clasificación climática de Köppen). A nivel regional, nuestros resultados revelaron que la península Ibérica se halla muy expuesta a la entrada y propagación de este organismo invasor, cuya presencia es ya generalizada en las islas Baleares. En el Antropoceno, la Geografía desempeña un papel crucial en el manejo de los riesgos biológicos. El éxito en la gestión de los mismos depende, en gran medida, de nuestra capacidad para predecir los rangos geográficos potenciales de los organismos invasores e identificar los factores que promueven su propagación.



Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Gutiérrez Hernández, O., & García, L. V. (2019). La dimensión geográfica de las invasiones biológicas en el Antropoceno: el caso de Xylella fastidiosa. Boletín De La Asociación De Geógrafos Españoles, (80). https://doi.org/10.21138/bage.2771

Bibliografía

Almeida, R. P. P., Coletta-Filho, H. D., & Lopes, J. R. S. (2014). Xylella fastidiosa. In Manual of Security Sensitive Microbes and Toxins (pp. 841–850). Boca Raton (Florida, US): CRC Press.

Almeida, R. P. P., & Purcell, A. H. (2003). Biological Traits of Xylella fastidiosa Strains from Grapes and Almonds. Applied and Environmental Microbiology, 69(12), 7447–7452. https://doi.org/10.1128/AEM.69.12.7447-7452.2003

Anderson, L. G., Rocliffe, S., Haddaway, N. R., & Dunn, A. M. (2015). The role of tourism and recreation in the spread of non-native species: A systematic review and meta-analysis. PLoS ONE, 10(10), 1–15. https://doi.org/10.1371/journal.pone.0140833

Araújo, W. L., Marcon, J., Maccheroni, W., Van Elsas, J. D., Van Vuurde, J. W. L., & Azevedo, J. L. (2002). Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology, 68(10), 4906–4914. https://doi.org/10.1128/AEM.68.10.4906-4914.2002

Ayala Carcedo, F. J., & Olcina Cantos, J. (2002). Riesgos naturales. Barcelona: Ariel.

Banks, N. C., Paini, D. R., Bayliss, K. L., & Hodda, M. (2015). The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecology Letters, 18(2), 188–199. https://doi.org/10.1111/ele.12397

Barbet-Massin, M., Rome, Q., Villemant, C., & Courchamp, F. (2018). Can species distribution models really predict the expansion of invasive species? PLoS ONE, 13(3), 1–14. https://doi.org/10.1371/journal.pone.0193085

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011

Benedetti, Y., & Morelli, F. (2017). Spatial mismatch analysis among hotspots of alien plant species, road and railway networks in Germany and Austria. PLoS ONE, 12(8). https://doi.org/10.1371/journal.pone.0183691

Bertelsmeier, C., Ollier, S., Liebhold, A., & Keller, L. (2017). Recent human history governs global ant invasion dynamics. Nature Ecology and Evolution, 1(7). https://doi.org/10.1038/s41559-017-0184

Bosso, L., Di Febbraro, M., Cristinzio, G., Zoina, A., & Russo, D. (2016). Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biological Invasions, 18(6), 1759–1768. https://doi.org/10.1007/s10530-016-1118-1

Bosso, L., Russo, D., Di Febbraro, M., Cristinzio, G., & Zoina, A. (2016). Potential distribution of Xylella fastidiosa in Italy: a maximum entropy model. Phytopathologia Mediterranea, 55(1), 62–72. https://doi.org/10.14601/Phytopathol

Bucci, E. M. (2018). Xylella fastidiosa, a new plant pathogen that threatens global farming: Ecology, molecular biology, search for remedies. Biochemical and Biophysical Research Communications, 502(2), 173–182. https://doi.org/10.1016/j.bbrc.2018.05.073

Capinha, C., Essl, F., Seebens, H., Moser, D., & Pereira, H. M. (2015). The dispersal of alien species redefines biogeography in the Anthropocene. Science, 348(6240), 1248–1251. https://doi.org/10.1126/science.aaa8913

Carlucci, A., Lops, F., Marchi, G., Mugnai, L., & Surico, G. (2013). Has Xylella fastidiosa “chosen” olive trees to establish in the mediterranean basin? Phytopathologia Mediterranea, 52(3), 541–544. https://doi.org/doi: 10.14601/Phytopathol_Mediterr-13623

Chatterjee, S., Almeida, R. P. P., & Lindow, S. (2008). Living in two Worlds: The Plant and Insect Lifestyles of Xylella fastidiosa. Annual Review of Phytopathology, 46(1), 243–271. https://doi.org/10.1146/annurev.phyto.45.062806.094342

Colautti, R., Colautti, R., Parker, J. D., Cadotte, M. W., Pyšek, P., Brown, C. S., & Richardson, D. (2014). Quantifying the invasiveness of species. NeoBiota, 21, 7–27. https://doi.org/10.3897/neobiota.21.5310

Cope, R. C., Ross, J. V., Wittmann, T. A., Watts, M. J., & Cassey, P. (2017). Predicting the Risk of Biological Invasions Using Environmental Similarity and Transport Network Connectedness. Risk Analysis. https://doi.org/10.1111/risa.12870

Cruaud, A., Gonzalez, A. A., Godefroid, M., Nidelet, S., Streito, J. C., Thuillier, J. M., & Rasplus, J. Y. (2018). Using insects to detect, monitor and predict the distribution of Xylella fastidiosa: a case study in Corsica. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-33957-z

Dalmazzone, S., & Giaccaria, S. (2014). Economic drivers of biological invasions: A worldwide, bio-geographic analysis. Ecological Economics, 105, 154–165. https://doi.org/10.1016/j.ecolecon.2014.05.008

De Marco, P., & Nóbrega, C. C. (2018). Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE, 13(9). https://doi.org/10.1371/journal.pone.0202403

Delbianco, A., Czwienczek, E., Pautasso, M., Kozelska, S., Monguidi, M., & Stancanelli, G. (2019). A new resource for research and risk analysis: the updated European Food Safety Authority database of Xylella spp. host plant species. Phytopathology. https://doi.org/10.1094/PHYTO-09-18-0343-A

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 027–046. https://doi.org/10.1111/j.1600-0587.2012.07348.x

Eastman, J. R. (2015). TerrSet: Geospatial Monitoring and Modeling Software (Software Manual). Worcester MA (USA): Clark University. More information at https://clarklabs.org/terrset/

Eastman, R. (1999). Multi-criteria evaluation and GIS. Geographical Information Systems, 1(1), 493–502.

Efron, B. (1981). Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika, 68(3), 589–599.

Elith, J. (2017). Predicting distributions of invasive species. In A. P. Robinson, T. Walshe, M. A. Burgman & M. Nunn (Eds.), Invasive Species: Risk Assessment and Management (pp. 93–129). Cambridge University Press. https://doi.org/10.1017/9781139019606.006

Escobar, L. E., & Craft, M. E. (2016). Advances and limitations of disease biogeography using ecological niche modeling. Frontiers in Microbiology, 7(AUG), 1–21. https://doi.org/10.3389/fmicb.2016.01174

Essl, F., Bacher, S., Blackburn, T. M., Booy, O., Brundu, G., Brunel, S., & Jeschke, J. M. (2015). Crossing Frontiers in Tackling Pathways of Biological Invasions. BioScience, 65(8), 769–782. https://doi.org/10.1093/biosci/biv082

Feil, H., & Purcell, A. H. (2001). Temperature-Dependent Growth and Survival of Xylella fastidiosa in Vitro and in Potted Grapevines. Plant Disease, 85(12), 1230–1234. https://doi.org/10.1094/PDIS.2001.85.12.1230

Fick, S., & Hijmans, R. . (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.

Franklin, J. (1995). Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 19, 474–499.

Franklin, J. (2009). Mapping Species Distributions: Spatial Inference and Prediction (Ecology, Biodiversity and Conservation). New York: Cambridge University Press.

Friedman, J. H. (1991). Multivariate Adaptive Regression Splines. The Annals of Statistics, 19(1), 1–67. https://doi.org/10.1214/aos/1176347963

Gallardo, B., & Vila, L. (2019). La influencia humana, clave para entender la Biogeografía de especies invasoras en el Antropoceno. Cuadernos de Investigación Geográfica, 45 (Unpublished). https://doi.org/http://doi.org/10.18172/cig.3627

Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I., & Thuiller, W. (2010). Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions, 16(3), 331–342.

Giampetruzzi, A., Velasco-Amo, M. P., Marco-Noales, E., Montes-Borrego, M., Román-Écija, M., Navarro, I., & Landa, B. B. (2018). Draft Genome Resources of Two Strains (“ESVL” and “IVIA5901”) of Xylella fastidiosa Associated with Almond Leaf Scorch Disease in Alicante, Spain. Phytopathology, (October), PHYTO-09-18-032. https://doi.org/10.1094/PHYTO-09-18-0328-A

Grosholz, E. D. (2018). New sources for the emergence of new invaders. Proceedings of the National Academy of Sciences, 115(10), 2270–2271. https://doi.org/10.1073/pnas.1800257115

Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat Suitability and Distribution Models: With Applications in R. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781139028271

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186.

Guisande González, C., Vaamonde Liste, A., & Barreiro Felpeto, A. (2013). Tratamiento de datos con R, STATISTICA y SPSS. Madird: Ediciones Díaz de Santos.

Gutiérrez Hernández, O., Cámara-Artigas, R., Senciales-González, J. M., & García, L. V. (2018). Modelos predictivos en Biogeografía : aplicación para la modelización de nichos ecológicos en Geografía Física applying ecological niche modelling in Physical Geography. Boletin de La Asociacion de Geógrafos Espanoles, 78, 88–126. http://dx.doi.org/10.21138/bage.2395

Gutiérrez Hernández, O., & García, L. V. (2018). Incidencia de Xylella fastidiosa en las Islas Baleares y distribución potencial en la península ibérica. Investigaciones Geográficas, 69, 55–72. https://doi.org/10.14198/INGEO2018.69.04

Hopkins, D. L. (1989). Xylella fastidiosa: Xylem-Limited Bacterial Pathogen of Plants. Annual Review of Phytopathology, 27, 271–290. https://doi.org/10.1146/annurev.py.27.090189.001415

Jackson, D. A. (1993). Stopping Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical Approaches. Ecology, 74(8), 2204–2214. https://doi.org/10.11400/kekkaku1923.50.8_229

Janse, J. D., & Obradovic, A. (2010). Xylella fastidiosa: Its biology, diagnosis, control and risks. Journal of Plant Pathology. https://doi.org/10.4454/JPP.V92I1SUP.2504

Jeger, M., Caffier, D., Candresse, T., Chatzivassiliou, E., Dehnen‐Schmutz, K., Gilioli, G., & Bragard, C. (2018). Updated pest categorisation of Xylella fastidiosa. EFSA Journal, 16(7). https://doi.org/10.2903/j.efsa.2018.5357

Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science, 14(2), 173–184. https://doi.org/10.1080/136588100240903

Jiménez-Valverde, A., Lobo, J. M., & Hortal, J. (2008). Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions, 14(6), 885–890.

Jiménez-Valverde, A., Peterson, A. T., Soberón, J., Overton, J. M., Aragón, P., & Lobo, J. M. (2011). Use of niche models in invasive species risk assessments. Biological Invasions, 13(12), 2785–2797.

Katinas, L., & Crisci, J. V. (2018). Agriculture Biogeography: An emerging discipline in search of a conceptual framework. Progress in Physical Geography, 42(4), 513–529. https://doi.org/10.1177/0309133318776493

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of Köppen−Geiger Climate Classification. Meteorologische Zeitschrift, 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130

Landa, B., Marco-Noales, E., & López, M. M. (2017). Enfermedades causadas por la bacteria Xylella fastidiosa. Cajamar Caja Rural.

Lima, J. E. O. De, Miranda, V. S., Hartung, J. S., Brlansky, R. H., Coutinho, A., Roberto, S. R., & Carlos, E. F. (1998). Coffee Leaf Scorch Bacterium : Axenic Culture, Pathogenicity and Comparison with Xylella fastidiosa of Citrus. Plant Disease, 82(1), 94–97. https://doi.org/10.1094/PDIS.1998.82.1.94

Lobo, J. M., Jiménez-Valverde, A., & Hortal, J. (2010). The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33(1), 103–114.

Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151.

Loconsole, G., Potere, O., Boscia, D., Altamura, G., Djelouah, K., Elbeaino, T., & Saponari, M. (2014). Detection of Xylella fastidiosa in olive trees by molecular and serological methods. Journal of Plant Pathology. https://doi.org/10.4454/JPP.V96I1.041

Lopes, J. R. S., Landa, B. B., & Fereres, A. (2014). A survey of potential insect vectors of the plant pathogenic bacterium Xylella fastidiosa in three regions of Spain. Spanish Journal of Agricultural Research, 12(3), 795–800. https://doi.org/10.5424/sjar/2014123-5613

Mang, S. M., Frisullo, S., Elshafie, H. S., & Camele, I. (2016). Diversity evaluation of Xylella fastidiosa from infected olive trees in Apulia (Southern Italy). Plant Pathology Journal, 32(2), 102–111. https://doi.org/10.5423/PPJ.OA.08.2015.0153

Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x

Meurisse, N., Rassati, D., Hurley, B. P., Brockerhoff, E. G., & Haack, R. A. (2018). Common pathways by which non-native forest insects move internationally and domestically. Journal of Pest Science. https://doi.org/10.1007/s10340-018-0990-0

Miraldo, A., Li, S., Borregaard, M. K., Flórez-rodríguez, A., Gopalakrishnan, S., Rizvanovic, M., & Nogués-bravo, D. (2016). An Anthropocene map of genetic diversity. Science, 353(6307), 1532–1535. https://doi.org/10.1126/science.aaf4381

Montz, B. E., & Tobin, G. A. (2011). Natural hazards: An evolving tradition in applied geography. Applied Geography, 31(1), 1–4. https://doi.org/10.1016/j.apgeog.2010.06.005

Morente, M., Cornara, D., Moreno, A., & Fereres, A. (2018). Continuous indoor rearing of Philaenus spumarius, the main European vector of Xylella fastidiosa. Journal of Applied Entomology, 142(9), 901–904. https://doi.org/10.1111/jen.12553

Morente, M., Cornara, D., Plaza, M., Durán, J., Capiscol, C., Trillo, R., Fereres, A. (2018). Distribution and Relative Abundance of Insect Vectors of Xylella fastidiosa in Olive Groves of the Iberian Peninsula. Insects, 9(4), 175. https://doi.org/10.3390/insects9040175

Murray, K. A., Olivero, J., Roche, B., Tiedt, S., & Guégan, J. F. (2018). Pathogeography: leveraging the biogeography of human infectious diseases for global health management. Ecography, 41(9), 1411–1427. https://doi.org/10.1111/ecog.03625

Murray, K. A., Preston, N., Allen, T., Zambrana-Torrelio, C., Hosseini, P. R., & Daszak, P. (2015). Global biogeography of human infectious diseases. Proceedings of the National Academy of Sciences, 112(41), 12746–12751. https://doi.org/10.1073/pnas.1507442112

Naimi, B., & Araújo, M. B. (2016). sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39(4), 368–375. https://doi.org/10.1111/ecog.01881

Nunney, L., Ortiz, B., Russell, S. A., Sánchez, R. R., & Stouthamer, R. (2014). The complex biogeography of the plant pathogen Xylella fastidiosa: Genetic evidence of introductions and subspecific introgression in central America. PLoS ONE. https://doi.org/10.1371/journal.pone.0112463

Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences. Science, 263(5147), 641–646. https://doi.org/10.1126/science.263.5147.641

Packer, J. G., Meyerson, L. A., Richardson, D. M., Brundu, G., Allen, W. J., Bhattarai, G. P., & Pyšek, P. (2017). Global networks for invasion science: benefits, challenges and guidelines. Biological Invasions, 19(4), 1081–1096. https://doi.org/10.1007/s10530-016-1302-3

Parker, J. D., Torchin, M. E., Hufbauer, R. A., Bossdorf, O., Byers, J. E., Dunn, A. M., & Wolfe, L. (2013). Do invasive species perform better in their new range. Ecology, 94(5), 1–8. https://doi.org/10.1890/12-1810.1

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Bastos Araujo, M. (2011). Ecological niches and geographic distributions (Vol. 49). Princeton, NJ: Princeton University Press.

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2016). Opening the black box: an open-source release of Maxent. Ecography. https://doi.org/10.1111/ecog.02537

Phillips, S. J., & Dudi, M. (2008). Modeling of species distributions with Maxent : new extensions and a comprehensive evaluation. Ecography, 31, 161–175.

Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics. https://doi.org/10.1016/j.ecolecon.2004.10.002

Purcell, A. H. (1997). Xylella fastidiosa, a regional problem or global threat? Journal of Plant Pathology, 79(2), 99–105.

R Core Team. (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna: R. Foundation for Statistical Computing. https://doi.org/10.1007/978-3-540-74686-7

Ramírez-Albores, J. E., Bustamante, R. O., & Badano, E. I. (2016). Improved predictions of the geographic distribution of invasive plants using climatic niche models. PLoS ONE, 11(5), 1–14. https://doi.org/10.1371/journal.pone.0156029

Rapicavoli, J., Ingel, B., Blanco-Ulate, B., Cantu, D., & Roper, C. (2018). Xylella fastidiosa: an examination of a re-emerging plant pathogen. Molecular Plant Pathology, 19(4), 786–800. https://doi.org/10.1111/mpp.12585

Redak, R. A., Purcell, A. H., Lopes, J. R. S., Blua, M. J., Mizell III, R. F., & Andersen, P. C. (2004). The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annual Review of Entomology, 49(1), 243–270. https://doi.org/10.1146/annurev.ento.49.061802.123403

Ricciardi, A., Blackburn, T. M., Carlton, J. T., Dick, J. T. A., Hulme, P. E., Iacarella, J. C., & Aldridge, D. C. (2017). Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends in Ecology and Evolution, 32(6), 464–474. https://doi.org/10.1016/j.tree.2017.03.007

Robinson, G. M. (2018). New frontiers in agricultural geography: Transformations, food security, land grabs and climate change. Boletin de la Asociación de Geógrafos Españoles, 2018(78), 1–48. https://doi.org/10.21138/bage.2710

Rodríguez-Labajos, B., Binimelis, R., & Monterroso, I. (2009). Multi-level driving forces of biological invasions. Ecological Economics, 69(1), 63–75. https://doi.org/10.1016/j.ecolecon.2009.08.022

Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D., & Saldarelli, P. (2018). Xylella fastidiosa in olive in Apulia: where we stand. Phytopathology, 1–12. https://doi.org/10.1094/PHYTO-08-18-0319-FI

Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., & Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8, 14435. https://doi.org/10.1038/ncomms14435

Seebens, H., Essl, F., Dawson, W., Fuentes, N., Moser, D., Pergl, J., & Blasius, B. (2015). Global trade will accelerate plant invasions in emerging economies under climate change. Global Change Biology, 21(11), 4128–4140. https://doi.org/10.1111/gcb.13021

Sicard, A., Zeilinger, A. R., Vanhove, M., Schartel, T. E., Beal, D. J., Daugherty, M. P., & Almeida, R. P. P. (2018). Annual Review of Phytopathology Xylella fastidiosa: Insights into an Emerging Plant Pathogen. Annual Review of Phytopathology, 56, 9.1-9.22. https://doi.org/10.1146/annurev-phyto-080417

Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., & Schellnhuber, H. J. (2018). Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences, 115(33), 8252–8259. https://doi.org/10.1073/pnas.1810141115

Strona, G., Carstens, C. J., & Beck, P. S. A. (2017). Network analysis reveals why Xylella fastidiosa will persist in Europe. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-00077-z

Tingley, R., García-Díaz, P., Arantes, C. R. R., & Cassey, P. (2018). Integrating transport pressure data and species distribution models to estimate invasion risk for alien stowaways. Ecography. https://doi.org/10.1111/ecog.02841

Václavík, T., & Meentemeyer, R. K. (2009). Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions? Ecological Modelling, 220(23), 3248–3258. https://doi.org/10.1016/j.ecolmodel.2009.08.013

Václavík, T., & Meentemeyer, R. K. (2012). Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions, 18(1), 73–83. https://doi.org/10.1111/j.1472-4642.2011.00854.x

Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C., Ga uszka, A., & Wolfe, A. P. (2016). The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351(6269), 137–148. https://doi.org/10.1126/science.aad2622

Wells, J. M., Raju, B. C., Hung, H.-Y., Weisburg, W. G., Mandelco-Paul, L., & Brenner, D. J. (1987). Xylella fastidiosa gen. nov.: gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. International Journal of Systematic Bacteriology, 37(2), 136–143. https://doi.org/10.1099/00207713-37-2-136

Zhu, G. P., & Peterson, A. T. (2017). Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biological Invasions, 19(9), 2519–2532. https://doi.org/10.1007/s10530-017-1460-y