The geographical dimension of biological invasions in the Anthropocene: the case of Xylella fastidiosa
Main Article Content
Abstract
Xylella fastidiosa is a potentially harmful organism for a large number of woody crops and tree species, being considered one of the most dangerous phytopathogenic bacteria worldwide. In this article, we used Ecological Niche Models (ENM) to predict the global potential distribution of X. fastidiosa, and at the regional level, Multi Criteria Evaluation (MCE) methods to predict the risk of exposure to this pathogen in the Iberian Peninsula and Balearic Islands. At the global level, our models predicted a wide potential distribution of X. fastidiosa with a wide potential radius of expansion temperate climates (Group C, Köppen climate classification). At regional level, our results revealed the Iberian Peninsula is very exposed to the entry and spread of this invasive organism, whose presence is already widespread in the Balearic Islands. In the Anthropocene epoch, Geography plays a crucial role in a management of biological risks because of a successful management depends heavily on our ability to predict potential geographical ranges of invasive organisms and to identify main factors that promote their spread.
Downloads
Article Details
References
Almeida, R. P. P., Coletta-Filho, H. D., & Lopes, J. R. S. (2014). Xylella fastidiosa. In Manual of Security Sensitive Microbes and Toxins (pp. 841–850). Boca Raton (Florida, US): CRC Press.
Almeida, R. P. P., & Purcell, A. H. (2003). Biological Traits of Xylella fastidiosa Strains from Grapes and Almonds. Applied and Environmental Microbiology, 69(12), 7447–7452. https://doi.org/10.1128/AEM.69.12.7447-7452.2003
Anderson, L. G., Rocliffe, S., Haddaway, N. R., & Dunn, A. M. (2015). The role of tourism and recreation in the spread of non-native species: A systematic review and meta-analysis. PLoS ONE, 10(10), 1–15. https://doi.org/10.1371/journal.pone.0140833
Araújo, W. L., Marcon, J., Maccheroni, W., Van Elsas, J. D., Van Vuurde, J. W. L., & Azevedo, J. L. (2002). Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology, 68(10), 4906–4914. https://doi.org/10.1128/AEM.68.10.4906-4914.2002
Ayala Carcedo, F. J., & Olcina Cantos, J. (2002). Riesgos naturales. Barcelona: Ariel.
Banks, N. C., Paini, D. R., Bayliss, K. L., & Hodda, M. (2015). The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecology Letters, 18(2), 188–199. https://doi.org/10.1111/ele.12397
Barbet-Massin, M., Rome, Q., Villemant, C., & Courchamp, F. (2018). Can species distribution models really predict the expansion of invasive species? PLoS ONE, 13(3), 1–14. https://doi.org/10.1371/journal.pone.0193085
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011
Benedetti, Y., & Morelli, F. (2017). Spatial mismatch analysis among hotspots of alien plant species, road and railway networks in Germany and Austria. PLoS ONE, 12(8). https://doi.org/10.1371/journal.pone.0183691
Bertelsmeier, C., Ollier, S., Liebhold, A., & Keller, L. (2017). Recent human history governs global ant invasion dynamics. Nature Ecology and Evolution, 1(7). https://doi.org/10.1038/s41559-017-0184
Bosso, L., Di Febbraro, M., Cristinzio, G., Zoina, A., & Russo, D. (2016). Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biological Invasions, 18(6), 1759–1768. https://doi.org/10.1007/s10530-016-1118-1
Bosso, L., Russo, D., Di Febbraro, M., Cristinzio, G., & Zoina, A. (2016). Potential distribution of Xylella fastidiosa in Italy: a maximum entropy model. Phytopathologia Mediterranea, 55(1), 62–72. https://doi.org/10.14601/Phytopathol
Bucci, E. M. (2018). Xylella fastidiosa, a new plant pathogen that threatens global farming: Ecology, molecular biology, search for remedies. Biochemical and Biophysical Research Communications, 502(2), 173–182. https://doi.org/10.1016/j.bbrc.2018.05.073
Capinha, C., Essl, F., Seebens, H., Moser, D., & Pereira, H. M. (2015). The dispersal of alien species redefines biogeography in the Anthropocene. Science, 348(6240), 1248–1251. https://doi.org/10.1126/science.aaa8913
Carlucci, A., Lops, F., Marchi, G., Mugnai, L., & Surico, G. (2013). Has Xylella fastidiosa “chosen” olive trees to establish in the mediterranean basin? Phytopathologia Mediterranea, 52(3), 541–544. https://doi.org/doi: 10.14601/Phytopathol_Mediterr-13623
Chatterjee, S., Almeida, R. P. P., & Lindow, S. (2008). Living in two Worlds: The Plant and Insect Lifestyles of Xylella fastidiosa. Annual Review of Phytopathology, 46(1), 243–271. https://doi.org/10.1146/annurev.phyto.45.062806.094342
Colautti, R., Colautti, R., Parker, J. D., Cadotte, M. W., Pyšek, P., Brown, C. S., & Richardson, D. (2014). Quantifying the invasiveness of species. NeoBiota, 21, 7–27. https://doi.org/10.3897/neobiota.21.5310
Cope, R. C., Ross, J. V., Wittmann, T. A., Watts, M. J., & Cassey, P. (2017). Predicting the Risk of Biological Invasions Using Environmental Similarity and Transport Network Connectedness. Risk Analysis. https://doi.org/10.1111/risa.12870
Cruaud, A., Gonzalez, A. A., Godefroid, M., Nidelet, S., Streito, J. C., Thuillier, J. M., & Rasplus, J. Y. (2018). Using insects to detect, monitor and predict the distribution of Xylella fastidiosa: a case study in Corsica. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-33957-z
Dalmazzone, S., & Giaccaria, S. (2014). Economic drivers of biological invasions: A worldwide, bio-geographic analysis. Ecological Economics, 105, 154–165. https://doi.org/10.1016/j.ecolecon.2014.05.008
De Marco, P., & Nóbrega, C. C. (2018). Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE, 13(9). https://doi.org/10.1371/journal.pone.0202403
Delbianco, A., Czwienczek, E., Pautasso, M., Kozelska, S., Monguidi, M., & Stancanelli, G. (2019). A new resource for research and risk analysis: the updated European Food Safety Authority database of Xylella spp. host plant species. Phytopathology. https://doi.org/10.1094/PHYTO-09-18-0343-A
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 027–046. https://doi.org/10.1111/j.1600-0587.2012.07348.x
Eastman, J. R. (2015). TerrSet: Geospatial Monitoring and Modeling Software (Software Manual). Worcester MA (USA): Clark University. More information at https://clarklabs.org/terrset/
Eastman, R. (1999). Multi-criteria evaluation and GIS. Geographical Information Systems, 1(1), 493–502.
Efron, B. (1981). Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika, 68(3), 589–599.
Elith, J. (2017). Predicting distributions of invasive species. In A. P. Robinson, T. Walshe, M. A. Burgman & M. Nunn (Eds.), Invasive Species: Risk Assessment and Management (pp. 93–129). Cambridge University Press. https://doi.org/10.1017/9781139019606.006
Escobar, L. E., & Craft, M. E. (2016). Advances and limitations of disease biogeography using ecological niche modeling. Frontiers in Microbiology, 7(AUG), 1–21. https://doi.org/10.3389/fmicb.2016.01174
Essl, F., Bacher, S., Blackburn, T. M., Booy, O., Brundu, G., Brunel, S., & Jeschke, J. M. (2015). Crossing Frontiers in Tackling Pathways of Biological Invasions. BioScience, 65(8), 769–782. https://doi.org/10.1093/biosci/biv082
Feil, H., & Purcell, A. H. (2001). Temperature-Dependent Growth and Survival of Xylella fastidiosa in Vitro and in Potted Grapevines. Plant Disease, 85(12), 1230–1234. https://doi.org/10.1094/PDIS.2001.85.12.1230
Fick, S., & Hijmans, R. . (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.
Franklin, J. (1995). Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 19, 474–499.
Franklin, J. (2009). Mapping Species Distributions: Spatial Inference and Prediction (Ecology, Biodiversity and Conservation). New York: Cambridge University Press.
Friedman, J. H. (1991). Multivariate Adaptive Regression Splines. The Annals of Statistics, 19(1), 1–67. https://doi.org/10.1214/aos/1176347963
Gallardo, B., & Vila, L. (2019). La influencia humana, clave para entender la Biogeografía de especies invasoras en el Antropoceno. Cuadernos de Investigación Geográfica, 45 (Unpublished). https://doi.org/http://doi.org/10.18172/cig.3627
Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I., & Thuiller, W. (2010). Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions, 16(3), 331–342.
Giampetruzzi, A., Velasco-Amo, M. P., Marco-Noales, E., Montes-Borrego, M., Román-Écija, M., Navarro, I., & Landa, B. B. (2018). Draft Genome Resources of Two Strains (“ESVL” and “IVIA5901”) of Xylella fastidiosa Associated with Almond Leaf Scorch Disease in Alicante, Spain. Phytopathology, (October), PHYTO-09-18-032. https://doi.org/10.1094/PHYTO-09-18-0328-A
Grosholz, E. D. (2018). New sources for the emergence of new invaders. Proceedings of the National Academy of Sciences, 115(10), 2270–2271. https://doi.org/10.1073/pnas.1800257115
Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat Suitability and Distribution Models: With Applications in R. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781139028271
Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186.
Guisande González, C., Vaamonde Liste, A., & Barreiro Felpeto, A. (2013). Tratamiento de datos con R, STATISTICA y SPSS. Madird: Ediciones Díaz de Santos.
Gutiérrez Hernández, O., Cámara-Artigas, R., Senciales-González, J. M., & García, L. V. (2018). Modelos predictivos en Biogeografía : aplicación para la modelización de nichos ecológicos en Geografía Física applying ecological niche modelling in Physical Geography. Boletin de La Asociacion de Geógrafos Espanoles, 78, 88–126. http://dx.doi.org/10.21138/bage.2395
Gutiérrez Hernández, O., & García, L. V. (2018). Incidencia de Xylella fastidiosa en las Islas Baleares y distribución potencial en la península ibérica. Investigaciones Geográficas, 69, 55–72. https://doi.org/10.14198/INGEO2018.69.04
Hopkins, D. L. (1989). Xylella fastidiosa: Xylem-Limited Bacterial Pathogen of Plants. Annual Review of Phytopathology, 27, 271–290. https://doi.org/10.1146/annurev.py.27.090189.001415
Jackson, D. A. (1993). Stopping Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical Approaches. Ecology, 74(8), 2204–2214. https://doi.org/10.11400/kekkaku1923.50.8_229
Janse, J. D., & Obradovic, A. (2010). Xylella fastidiosa: Its biology, diagnosis, control and risks. Journal of Plant Pathology. https://doi.org/10.4454/JPP.V92I1SUP.2504
Jeger, M., Caffier, D., Candresse, T., Chatzivassiliou, E., Dehnen‐Schmutz, K., Gilioli, G., & Bragard, C. (2018). Updated pest categorisation of Xylella fastidiosa. EFSA Journal, 16(7). https://doi.org/10.2903/j.efsa.2018.5357
Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science, 14(2), 173–184. https://doi.org/10.1080/136588100240903
Jiménez-Valverde, A., Lobo, J. M., & Hortal, J. (2008). Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions, 14(6), 885–890.
Jiménez-Valverde, A., Peterson, A. T., Soberón, J., Overton, J. M., Aragón, P., & Lobo, J. M. (2011). Use of niche models in invasive species risk assessments. Biological Invasions, 13(12), 2785–2797.
Katinas, L., & Crisci, J. V. (2018). Agriculture Biogeography: An emerging discipline in search of a conceptual framework. Progress in Physical Geography, 42(4), 513–529. https://doi.org/10.1177/0309133318776493
Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of Köppen−Geiger Climate Classification. Meteorologische Zeitschrift, 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130
Landa, B., Marco-Noales, E., & López, M. M. (2017). Enfermedades causadas por la bacteria Xylella fastidiosa. Cajamar Caja Rural.
Lima, J. E. O. De, Miranda, V. S., Hartung, J. S., Brlansky, R. H., Coutinho, A., Roberto, S. R., & Carlos, E. F. (1998). Coffee Leaf Scorch Bacterium : Axenic Culture, Pathogenicity and Comparison with Xylella fastidiosa of Citrus. Plant Disease, 82(1), 94–97. https://doi.org/10.1094/PDIS.1998.82.1.94
Lobo, J. M., Jiménez-Valverde, A., & Hortal, J. (2010). The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33(1), 103–114.
Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151.
Loconsole, G., Potere, O., Boscia, D., Altamura, G., Djelouah, K., Elbeaino, T., & Saponari, M. (2014). Detection of Xylella fastidiosa in olive trees by molecular and serological methods. Journal of Plant Pathology. https://doi.org/10.4454/JPP.V96I1.041
Lopes, J. R. S., Landa, B. B., & Fereres, A. (2014). A survey of potential insect vectors of the plant pathogenic bacterium Xylella fastidiosa in three regions of Spain. Spanish Journal of Agricultural Research, 12(3), 795–800. https://doi.org/10.5424/sjar/2014123-5613
Mang, S. M., Frisullo, S., Elshafie, H. S., & Camele, I. (2016). Diversity evaluation of Xylella fastidiosa from infected olive trees in Apulia (Southern Italy). Plant Pathology Journal, 32(2), 102–111. https://doi.org/10.5423/PPJ.OA.08.2015.0153
Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
Meurisse, N., Rassati, D., Hurley, B. P., Brockerhoff, E. G., & Haack, R. A. (2018). Common pathways by which non-native forest insects move internationally and domestically. Journal of Pest Science. https://doi.org/10.1007/s10340-018-0990-0
Miraldo, A., Li, S., Borregaard, M. K., Flórez-rodríguez, A., Gopalakrishnan, S., Rizvanovic, M., & Nogués-bravo, D. (2016). An Anthropocene map of genetic diversity. Science, 353(6307), 1532–1535. https://doi.org/10.1126/science.aaf4381
Montz, B. E., & Tobin, G. A. (2011). Natural hazards: An evolving tradition in applied geography. Applied Geography, 31(1), 1–4. https://doi.org/10.1016/j.apgeog.2010.06.005
Morente, M., Cornara, D., Moreno, A., & Fereres, A. (2018). Continuous indoor rearing of Philaenus spumarius, the main European vector of Xylella fastidiosa. Journal of Applied Entomology, 142(9), 901–904. https://doi.org/10.1111/jen.12553
Morente, M., Cornara, D., Plaza, M., Durán, J., Capiscol, C., Trillo, R., Fereres, A. (2018). Distribution and Relative Abundance of Insect Vectors of Xylella fastidiosa in Olive Groves of the Iberian Peninsula. Insects, 9(4), 175. https://doi.org/10.3390/insects9040175
Murray, K. A., Olivero, J., Roche, B., Tiedt, S., & Guégan, J. F. (2018). Pathogeography: leveraging the biogeography of human infectious diseases for global health management. Ecography, 41(9), 1411–1427. https://doi.org/10.1111/ecog.03625
Murray, K. A., Preston, N., Allen, T., Zambrana-Torrelio, C., Hosseini, P. R., & Daszak, P. (2015). Global biogeography of human infectious diseases. Proceedings of the National Academy of Sciences, 112(41), 12746–12751. https://doi.org/10.1073/pnas.1507442112
Naimi, B., & Araújo, M. B. (2016). sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39(4), 368–375. https://doi.org/10.1111/ecog.01881
Nunney, L., Ortiz, B., Russell, S. A., Sánchez, R. R., & Stouthamer, R. (2014). The complex biogeography of the plant pathogen Xylella fastidiosa: Genetic evidence of introductions and subspecific introgression in central America. PLoS ONE. https://doi.org/10.1371/journal.pone.0112463
Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences. Science, 263(5147), 641–646. https://doi.org/10.1126/science.263.5147.641
Packer, J. G., Meyerson, L. A., Richardson, D. M., Brundu, G., Allen, W. J., Bhattarai, G. P., & Pyšek, P. (2017). Global networks for invasion science: benefits, challenges and guidelines. Biological Invasions, 19(4), 1081–1096. https://doi.org/10.1007/s10530-016-1302-3
Parker, J. D., Torchin, M. E., Hufbauer, R. A., Bossdorf, O., Byers, J. E., Dunn, A. M., & Wolfe, L. (2013). Do invasive species perform better in their new range. Ecology, 94(5), 1–8. https://doi.org/10.1890/12-1810.1
Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Bastos Araujo, M. (2011). Ecological niches and geographic distributions (Vol. 49). Princeton, NJ: Princeton University Press.
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2016). Opening the black box: an open-source release of Maxent. Ecography. https://doi.org/10.1111/ecog.02537
Phillips, S. J., & Dudi, M. (2008). Modeling of species distributions with Maxent : new extensions and a comprehensive evaluation. Ecography, 31, 161–175.
Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics. https://doi.org/10.1016/j.ecolecon.2004.10.002
Purcell, A. H. (1997). Xylella fastidiosa, a regional problem or global threat? Journal of Plant Pathology, 79(2), 99–105.
R Core Team. (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna: R. Foundation for Statistical Computing. https://doi.org/10.1007/978-3-540-74686-7
Ramírez-Albores, J. E., Bustamante, R. O., & Badano, E. I. (2016). Improved predictions of the geographic distribution of invasive plants using climatic niche models. PLoS ONE, 11(5), 1–14. https://doi.org/10.1371/journal.pone.0156029
Rapicavoli, J., Ingel, B., Blanco-Ulate, B., Cantu, D., & Roper, C. (2018). Xylella fastidiosa: an examination of a re-emerging plant pathogen. Molecular Plant Pathology, 19(4), 786–800. https://doi.org/10.1111/mpp.12585
Redak, R. A., Purcell, A. H., Lopes, J. R. S., Blua, M. J., Mizell III, R. F., & Andersen, P. C. (2004). The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annual Review of Entomology, 49(1), 243–270. https://doi.org/10.1146/annurev.ento.49.061802.123403
Ricciardi, A., Blackburn, T. M., Carlton, J. T., Dick, J. T. A., Hulme, P. E., Iacarella, J. C., & Aldridge, D. C. (2017). Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends in Ecology and Evolution, 32(6), 464–474. https://doi.org/10.1016/j.tree.2017.03.007
Robinson, G. M. (2018). New frontiers in agricultural geography: Transformations, food security, land grabs and climate change. Boletin de la Asociación de Geógrafos Españoles, 2018(78), 1–48. https://doi.org/10.21138/bage.2710
Rodríguez-Labajos, B., Binimelis, R., & Monterroso, I. (2009). Multi-level driving forces of biological invasions. Ecological Economics, 69(1), 63–75. https://doi.org/10.1016/j.ecolecon.2009.08.022
Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D., & Saldarelli, P. (2018). Xylella fastidiosa in olive in Apulia: where we stand. Phytopathology, 1–12. https://doi.org/10.1094/PHYTO-08-18-0319-FI
Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., & Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8, 14435. https://doi.org/10.1038/ncomms14435
Seebens, H., Essl, F., Dawson, W., Fuentes, N., Moser, D., Pergl, J., & Blasius, B. (2015). Global trade will accelerate plant invasions in emerging economies under climate change. Global Change Biology, 21(11), 4128–4140. https://doi.org/10.1111/gcb.13021
Sicard, A., Zeilinger, A. R., Vanhove, M., Schartel, T. E., Beal, D. J., Daugherty, M. P., & Almeida, R. P. P. (2018). Annual Review of Phytopathology Xylella fastidiosa: Insights into an Emerging Plant Pathogen. Annual Review of Phytopathology, 56, 9.1-9.22. https://doi.org/10.1146/annurev-phyto-080417
Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., & Schellnhuber, H. J. (2018). Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences, 115(33), 8252–8259. https://doi.org/10.1073/pnas.1810141115
Strona, G., Carstens, C. J., & Beck, P. S. A. (2017). Network analysis reveals why Xylella fastidiosa will persist in Europe. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-00077-z
Tingley, R., García-Díaz, P., Arantes, C. R. R., & Cassey, P. (2018). Integrating transport pressure data and species distribution models to estimate invasion risk for alien stowaways. Ecography. https://doi.org/10.1111/ecog.02841
Václavík, T., & Meentemeyer, R. K. (2009). Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions? Ecological Modelling, 220(23), 3248–3258. https://doi.org/10.1016/j.ecolmodel.2009.08.013
Václavík, T., & Meentemeyer, R. K. (2012). Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions, 18(1), 73–83. https://doi.org/10.1111/j.1472-4642.2011.00854.x
Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C., Ga uszka, A., & Wolfe, A. P. (2016). The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351(6269), 137–148. https://doi.org/10.1126/science.aad2622
Wells, J. M., Raju, B. C., Hung, H.-Y., Weisburg, W. G., Mandelco-Paul, L., & Brenner, D. J. (1987). Xylella fastidiosa gen. nov.: gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. International Journal of Systematic Bacteriology, 37(2), 136–143. https://doi.org/10.1099/00207713-37-2-136
Zhu, G. P., & Peterson, A. T. (2017). Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biological Invasions, 19(9), 2519–2532. https://doi.org/10.1007/s10530-017-1460-y