Análisis de la movilidad espacial de la población asociada a huracanes a partir de la sombra digital geoespacial derivada de Twitter

Contenido principal del artículo

Yago Martín


Múltiples investigadores creen que el estudio del comportamiento y movilidad espacial de la población ha alcanzado un cuello de botella debido a la rigidez de los métodos tradicionales de investigación en el campo y a la dificultad de acceso a información relevante y de confianza. La sombra digital geoespacial es una de las oportunidades más prometedoras para poder desarrollar y probar nuevas hipótesis en el estudio del comportamiento espacial, pero la aplicación de estos nuevos métodos todavía no ha sido suficientemente explorada en el campo de los riesgos y desastres. Este artículo recoge los últimos avances en este ámbito centrándose en la capacidad de la sombra digital geoespacial de redes sociales (Twitter) como un método innovador para el estudio del comportamiento espacial humano durante emergencias. Esta investigación rastrea las localizaciones de usuarios de Twitter durante el periodo pre-desastre para producir estimaciones del número de evacuados, y en los meses posteriores al desastre para estimaciones de desplazados y del impacto del evento en el turismo.


La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Martín, Y. (2020). Análisis de la movilidad espacial de la población asociada a huracanes a partir de la sombra digital geoespacial derivada de Twitter. Boletín De La Asociación De Geógrafos Españoles, (84).


Adey, P. (2016). Emergency mobilities. Mobilities, 11(1), 32–48.

Adger, W. N., de Campos, R. S., & Mortreux, C. (2018). Mobility, displacement and migration, and their interactions with vulnerability and adaptation to environmental risks. In R. McLeman & F. Gemenne (Eds.), Routledge Handbook of Environmental Displacement and Migration (pp. 29–41). New York: Routledge.

Amini, A., Kung, K., Kang, C., Sobolevsky, S., & Ratti, C. (2014). The impact of social segregation on human mobility in developing and industrialized regions. EPJ Data Science, 3(1), 1–20.

Andrienko, N., Andrienko, G., Stange, H., Liebig, T., & Hecker, D. (2012). Visual analytics for understanding spatial situations from episodic movement data. KI-Künstliche Intelligenz, 26(3), 241–251.

Archibald, E., & McNeil, S. (2012). Learning from traffic data collected before, during and after a hurricane. IATSS Research, 36(1), 1–10.

Arlikatti, S., Lindell, M. K., Prater, C. S., & Zhang, Y. (2006). Risk area accuracy and hurricane evacuation expectations of coastal residents. Environment and Behavior, 38(2), 226–247.

Baker, E. J. (2009). Acquiring data on travel behaviour during emergencies and exceptional events. In P. Bonnel, M. Lee-Gosselin, J. Zmud, & J. L. Madre (Eds.), Transport Survey Methods: Keeping up with a Changing World (pp. 197–211). Bingley: Emerald Group Publishing Limited.

Bajardi, P., Delfino, M., Panisson, A., Petri, G., & Tizzoni, M. (2015). Unveiling patterns of international communities in a global city using mobile phone data. EPJ Data Science, 4(3), 1–17.

Bauman, Z. (1996). From pilgrim to tourist–or a short history of identity. Questions of Cultural Identity, 1, 18–36.

Bengtsson, L., Lu, X., Thorson, A., Garfield, R., & Von Schreeb, J. (2011). Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in Haiti. PLoS Medicine, 8(8), e1001083.

Birenboim, A., & Shoval, N. (2016). Mobility research in the age of the smartphone. Annals of the American Association of Geographers, 106(2), 283–291.

Black, R., Arnell, N. W., Adger, W. N., Thomas, D., & Geddes, A. (2013). Migration, immobility and displacement outcomes following extreme events. Environmental Science & Policy, 27, S32–S43.

Bowser, G. C. (2013). Determining the differences in hurricane perception and evacuation behavior in the elderly of South Carolina (Doctoral dissertation). University of South Carolina, Columbia, SC, USA. Retrieved from

Brommer, D. M., & Senkbeil, J. C. (2010). Pre-landfall evacuee perception of the meteorological hazards associated with Hurricane Gustav. Natural Hazards, 55(2), 353–369.

Bowser, G. C., & Cutter, S. L. (2015). Stay or go? Examining decision making and behavior in hurricane evacuations. Environment: Science and Policy for Sustainable Development, 57(6), 28–41.

Burton, I., & Hewitt, K. (1971). The hazardousness of a place: a regional ecology of damaging events. Toronto: University of Toronto Press.

Burton, S. H., Tanner, K. W., Giraud–Carrier, C. G., West, J. H., & Barnes, M. D. (2012). "Right time, right place" health communication on Twitter: Value and accuracy of location information. Journal of Medical Internet Research, 14(6).

Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., & Scott, J. (2007). Impact of human mobility on opportunistic forwarding algorithms. IEEE Transactions on Mobile Computing, 6, 606–620.

Çolak, S., Lima, A., & González, M. C. (2016). Understanding congested travel in urban areas. Nature Communications, 7, 10793.

Cooper, M., Biehl, J., Filby, G., & Kratz, S. (2016). LoCo: Boosting for indoor location classification combining Wi-Fi and BLE. Personal and Ubiquitous Computing, 20(1), 83–96.

Cresswell, T. (2011). Mobilities I: Catching up. Progress in Human Geography, 35(4), 550–558.

Cutter, S. L., Emrich, C. T., Bowser, G. C., Angelo, D., & Mitchell, J. T. (2011). South Carolina hurricane evacuation behavioral study. Retrieved from

D’Ambrosio, R. (2018, May 14). As hurricane season nears, travel agents wonder if Puerto Rico is ready. Travelmarket. Retrieved from

Dow, K., & Cutter, S. L. (1998). Crying wolf: Repeat responses to hurricane evacuation orders. Coastal Management, 26(4), 237–52.

Dow, K., & Cutter, S. L. (2000). Public orders and personal opinions: Household strategies for hurricane risk assessment. Global Environmental Change Part B: Environmental Hazards, 2(4), 143–155.

Dow, K., & Cutter, S. L. (2002). Emerging hurricane evacuation issues: Hurricane Floyd and South Carolina. Natural Hazards Review, 3(1), 12–18.

Dueker, D., Taher, M., Wilson, J., & McConnell, R. (2014). Evaluating children’s location using a personal GPS logging instrument: limitations and lessons learned. Journal of Exposure Science and Environmental Epidemiology, 24(3), 244.

Durage, S. W., Kattan, L., Wirasinghe, S. C., & Ruwanpura, J. Y. (2014). Evacuation behaviour of households and drivers during a tornado. Natural Hazards, 71(3), 1495–1517.

Echenique, M., & Melgar, L. (2018, May 11). Mapping Puerto Rico’s hurricane migration with mobile phone data. CityLab. Retrieved from

Elgethun, K., Yost, M. G., Fitzpatrick, C. T., Nyerges, T. L., & Fenske, R. A. (2007). Comparison of Global Positioning System (GPS) Tracking and Parent-Report Diaries to Characterize Children’s Time-Location Patterns. Journal of Exposure Science & Environmental Epidemiology, 17, 196–206.

Estébanez Álvarez, J. (1990) Tendencias y problemática actual de la geografía. Madrid: Cincel.

Falcón-Lezama, J. A., Santos-Luna, R., Román-Pérez, S., Martínez-Vega, R. A., Herrera-Valdez, M. A., Kuri-Morales, Á. F., ... & Ramos-Castañeda, J. (2017). Analysis of spatial mobility in subjects from a Dengue endemic urban locality in Morelos State, Mexico. PloS ONE, 12(2), e0172313.

Finch, C., Emrich, C. T., & Cutter, S. L. (2010). Disaster disparities and differential recovery in New Orleans. Population and Environment, 31(4), 179–202.

Fussell, E., Sastry, N., & VanLandingham, M. (2010). Race, socioeconomic status, and return migration to New Orleans after Hurricane Katrina. Population and Environment, 31(1–3), 20–42.

Gerber, M. S. (2014). Predicting crime using Twitter and kernel density estimation. Decision Support Systems, 61, 115–125.

Gething, P. W., & Tatem, A. J. (2011). Can mobile phone data improve emergency response to natural disasters?. PLoS medicine, 8(8), e1001085.

Gladwin, H., & Peacock W. G. (1997) Warning and evacuation: A night for hard houses. In W. G. Peacock, B. Morrow & H. Gladwin (Eds.) Hurricane Andrew: Gender, ethnicity and the sociology of disasters (pp. 52–74). New York: Routledge.

Golledge, R. G., & Stimson, R. J. (1997). Spatial behavior: A geographic perspective. London: The Guilford Press.

Gong, Y., Lin, Y., & Duan, Z. (2017). Exploring the spatiotemporal structure of dynamic urban space using metro smart card records. Computers, Environment and Urban Systems, 64, 169–183.

González, M. C., Hidalgo, C. A., & Barabási, A.-L., (2008). Understanding individual human mobility patterns. Nature, 453, 779–782.

Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.

Government of Puerto Rico. (2018). Puerto Rico disaster recovery action plan. Retrieved from

Groen, J. A., & Polivka, A. E. (2010). Going home after Hurricane Katrina: Determinants of return migration and changes in affected areas. Demography, 47(4), 821–844.

Harvey, D. (1989). The Condition of Postmodernity. An Enquiry into the Origins of Cultural Change. Oxford: Blackwell.

Hecht, B. J., & Stephens, M. (2014). A tale of cities: Urban biases in volunteered geographic information. ICWSM, 14, 197–205.

Hinojosa, J., & Meléndez, E. (2018). Puerto Rican exodus: One year since Hurricane Maria. Retrieved from

Isaacson, M., & Shoval, N. (2006). Application of tracking technologies to the study of pedestrian spatial behavior. The Professional Geographer, 58(2), 172–183.

Jiang, Y., Li, Z., & Ye, X. (2018). Understanding demographic and socioeconomic biases of geotagged Twitter users at the county level. Cartography and Geographic Information Science, 1–15.

Johnson, T. P., & Wislar, J. S. (2012). Response rates and nonresponse errors in surveys. Journal of the American Medical Association, 307(17), 1805–1806.

Jurdak, R., Zhao, K., Liu, J., AbouJaoude, M., Cameron, M., & Newth, D. (2015). Understanding human mobility from Twitter. PLoS ONE, 10, e0131469.

Kates, R. W. 1962. Hazard and choice perception in flood plain management (University of Chicago, Department of Geography Research Paper, No. 78).

Kishore, N., Marqués, D., Mahmud, A., Kiang, M. V., Rodriguez, I., Fuller, A., … Buckee, C.O. (2018). Mortality in Puerto Rico after Hurricane Maria. New England Journal of Medicine, 379, 162–170.

Kontokosta, C. E., & Johnson, N. (2017). Urban phenology: Toward a real-time census of the city using Wi-Fi data. Computers, Environment and Urban Systems, 64, 144–153.

Kumar, D., & Ukkusuri, S. V. (2018, April). Utilizing geo-tagged tweets to understand evacuation dynamics during emergencies: A case study of Hurricane Sandy. In Companion Proceedings of the Web Conference 2018 (pp. 1613–1620). Lyon, France.

Laczko, F. (2015). Factoring migration into the development data revolution. Journal of International Affairs, 68(2), 1.

Li, Z., Wang, C., Emrich, C. T., & Guo, D. (2018). A novel approach to leveraging social media for rapid flood mapping: A case study of the 2015 South Carolina floods. Cartography and Geographic Information Science, 45(2), 97–110.

Lima, V. V., Miranda, J. M., Baptista, M. A., Catalão, J., González Rodríguez, E. M., Otero, L., ... & Carreño Herrero, E. (2010). Impact of a 1755-like tsunami in Huelva, Spain. Natural Hazards and Earth System Science, 10, 139–148.

Lindell, M. K., Kang, J. E., & Prater, C. S. (2011). The logistics of household hurricane evacuation. Natural Hazards, 58(3), 1093–1109.

Manning, P. (2012). Migration in world history. New York: Routledge.

Martín, Y., Li, Z., & Cutter, S. L. (2017). Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis of Hurricane Matthew. PLoS ONE, 12, e0181701.

Martín, Y., Cutter, S. L., & Li, Z. (2020). Bridging social media and survey data for the evacuation assessment of Hurricane Matthew and Hurricane Irma. Natural Hazards Review, 21(2).

McLeman, R., & Gemenne, F. (Eds.). (2018). Routledge handbook of environmental displacement and migration. Routledge.

Mislove, A., Lehmann, S., Ahn, Y. Y., Onnela, J. P., & Rosenquist, J. N. (2011). Understanding the demographics of Twitter users. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media. Barcelona, Spain. Retrieved from

Mitchell, J. T., Cutter, S. L., & Edmonds, A. S. (2007). Improving shadow evacuation management: Case study of the Graniteville, South Carolina chlorine spill. Journal of Emergency Management, 5(1), 28–34.

Moon, H., Kim, C., & Lee, W. (2016). A UAV based 3-D positioning framework for detecting locations of buried persons in collapsed disaster area. international archives of the photogrammetry, Remote Sensing and Spatial Information Sciences, 41.

National Hurricane Center (NHC). (2018). NHC Data in GIS Formats. Retrieved from

National Institute of Standards and Technology (NIST). (2017). Hurricane Maria (2017): Preliminary Peak Wind Gust. Retrieved from econnaissance_of_hurricane_maria_puerto_rico.pdf

Pasch, R., Penny, A., & Berg, R. (2018). Hurricane Maria (AL 152017). Retrieved from

Paz-Soldan, V. A., Reiner Jr, R. C., Morrison, A. C., Stoddard, S. T., Kitron, U., Scott, T. W., ... & Vazquez-Prokopec, G. M. (2014). Strengths and weaknesses of Global Positioning System (GPS) data-loggers and semi-structured interviews for capturing fine-scale human mobility: findings from Iquitos, Peru. PLoS neglected tropical diseases, 8(6), e2888.

Perttunen, M., Kostakos, V., Riekki, J., & Ojala, T. (2014). Spatio-temporal patterns link your digital identities. Computers, Environment and Urban Systems, 47, 58–67.

Phithakkitnukoon, S., Smoreda, Z., & Olivier, P. (2012). Socio-geography of human mobility: A study using longitudinal mobile phone data. PloS one, 7(6), e39253.

Rango, M., & Vespe, M. (2017). Big Data and Alternative Data Sources on Migration: From Case-Studies to Policy Support (Summary report European Commission – Joint Research Centre) Retrieved from

San Carlos Arce, R., Onuki, M., Esteban, M., & Shibayama, T. (2017). Risk awareness and intended tsunami evacuation behaviour of international tourists in Kamakura City, Japan. International Journal of Disaster Risk Reduction, 23, 178–92.

Shareck, M., Kestens, Y., & Gauvin, L. (2013). Examining the spatial congruence between data obtained with a novel activity location questionnaire, continuous GPS tracking, & prompted recall surveys. International Journal of Health Geographics, 12(40).

Shoval, N., McKercher, B., Ng, E., & Birenboim, A. (2011). Hotel location and tourist activity in cities. Annals of Tourism Research, 38(4), 1594–1612.

Siebeneck, L. K., & Cova, T. J. (2012). Spatial and temporal variation in evacuee risk perception throughout the evacuation and return-entry process. Risk Analysis, 32(9), 1468–80.

Slovic, P. (1987). Perception of risk. Science, 236(4799), 280–85.

Sorensen, J. H., & Mileti, D. S. (1988). Warning and evacuation: Answering some basic questions. Industrial Crisis Quarterly, 2, 195–209.

Smith, S. K., & McCarty, C. (2009). Fleeing the storm(s): An examination of evacuation behavior during Florida’s 2004 hurricane season. Demography, 46, 127–145.

Sobolevsky, S., Sitko, I., Des Combes, R. T., Hawelka, B., Arias, J. M., & Ratti, C. (2014). Money on the move: Big data of bank card transactions as the new proxy for human mobility patterns and regional delineation. the case of residents and foreign visitors in Spain. In Proceedings of the 2014 IEEE International Congress on Big Data (pp. 136–143). IEEE. Washington, DC, USA.

Solares, J. M., & Arroyo, A. L. (2004). The great historical 1755 earthquake. Effects and damage in Spain. Journal of Seismology, 8(2), 275–294.

South Carolina Department of Transportation (SCDOT). (2017). Average annual daily traffic. Retrieved from

Spence, P. R., Lachlan, K. A., & Rainear, A. M. (2016). Social media and crisis research: Data collection and directions. Computers in Human Behavior, 54, 667–672.

Spyratos, S., Vespe, M., Natale, F., Ingmar, W., Zagheni, E., & and Rango, M. (2018). Migration data using social media: A European perspective (EUR 29273 EN).

Stanton, M. C., Yamauchi, M., Mkwanda, S. Z., Ndhlovu, P., Matipula, D. E., Mackenzie, C., & Kelly-Hope, L. A. (2017). Measuring the physical and economic impact of filarial lymphoedema in Chikwawa district, Malawi: A case-control study. Infectious Diseases of Poverty, 6(1), 28.

State, B., Weber, I., & Zagheni, E. (2013, February). Studying inter-national mobility through IP geolocation. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining. (pp. 265–274). ACM. Rome, Italy.

Stewart, S. R. (2017). Hurricane Matthew (AL142016). Retrieved from

Stone, L. (2017). How low will Puerto Rico’s population go? Retrieved from

Tamima, U., & Chouinard, L. (2016). Development of evacuation models for moderate seismic zones: A case study of Montreal. International Journal of Disaster Risk Reduction, 16, 167–79.

Tourism Economics. (2019). Economic Impacts of Visitor Spending in Puerto Rico. Retrieved from

Ukkusuri, S. V., Zhan, X., Sadri, A. M., & Ye, Q. (2014). Use of social media data to explore crisis informatics: Study of 2013 Oklahoma Tornado. Transportation Research Record, 2459(1), 110–118.

United States Census Bureau (2018). December 19, 2018. Release number CB18-193. Retrieved from

Vazquez-Prokopec, G. M., Stoddard, S. T., Paz-Soldan, V., Morrison, A. C., Elder, J. P., Kochel, T. J., Scott, T.W., & Kitron, U. (2009). Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. International Journal of Health Geographics, 8(1), 68.

Vogel, N., Theisen, C., Leidig, J. P., Scripps, J., Graham, D. H., & Wolffe, G. (2015). mining mobile datasets to enable the fine-grained stochastic simulation of ebola diffusion. Procedia Computer Science, 51, 765–774.

Wang, H., Zhang, X., Wu, L., Hou, C., Gong, H., Zhang, Q., & Ouyang, M. (2015). Beijing passenger car travel survey: Implications for alternative fuel vehicle deployment. Mitigation and Adaptation Strategies for Global Change, 20(5), 817–835.

Wang, Q., & Taylor, J. E. (2014). Quantifying, comparing human mobility perturbation during Hurricane Sandy, Typhoon Wipha, Typhoon Haiyan. Procedia Economics and Finance, 18, 33–38.

Wang, Q., & Taylor, J. E. (2016). Patterns and limitations of urban human mobility resilience under the influence of multiple types of natural disaster. PLoS ONE, 11(1), e0147299.

Wesolowski, A., Eagle, N., Tatem, A. J., Smith, D. L., Noor, A. M., Snow, R. W., & Buckee, C. O. (2012). Quantifying the impact of human mobility on malaria. Science, 338(6104), 267–270.

White, G. F. (1945). Human adjustments to floods: A geographical approach to the flood problem in the United States. Research Paper No. 29. Chicago: Department of Geography, University of Chicago. Retrieved from

Widener, M. J., & Li, W. (2014). Using geolocated Twitter data to monitor the prevalence of healthy and unhealthy food references across the US. Applied Geography, 54, 189–197.

Widhalm, P., Yang, Y., Ulm, M., Athavale, S., & González, M. C. (2015). Discovering urban activity patterns in cell phone data. Transportation, 42(4), 597–623.

Willoughby, H. E. (2012). Distributions and trends of death and destruction from hurricanes in the United States, 1900–2008. Natural Hazards Review, 13(1), 57–64. doi:10.1061/(ASCE)NH.1527-6996.0000046

Wolshon, B., & Pande, A. (2016). Traffic Engineering Handbook. John Wiley & Sons.

Yabe, T., Sekimoto, Y., Tsubouchi, K., & Ikemoto, S. (2019). Cross-comparative analysis of evacuation behavior after earthquakes using mobile phone data. PLoS one, 14(2), e0211375.

Zeigler, D. J., Brunn, S. D., & Johnson, J. H., Jr. (1981). Evacuation from a nuclear technological disaster. Geographical Review, 71, 1–16.

Zhang, Y., Prater, C. S., & Lindell, M. K. (2004). Risk area accuracy and evacuation from Hurricane Bret. Natural Hazards Review, 5(3), 115–120.

Zhong, C., Manley, E., Arisona, S. M., Batty, M., & Schmitt, G. (2015). Measuring variability of mobility patterns from multiday smart-card data. Journal of Computational Science, 9, 125–130.