Analysis of hurricane-induced population spatial mobility through geospatial digital shadows derived from Twitter
Main Article Content
Abstract
Multiple researchers believe spatial behavior has reached a bottleneck derived from the rigidity of traditional spatial behavior inquiry methods and the unavailability of trustworthy and relevant information. Digital geospatial trace data is seen as one of the most promising opportunities to develop and test new hypotheses on spatial behavior, but the application of these new methods has not been fully explored within the hazard/disaster discipline. This article summarizes the latest advancements in this area focusing on the suitability of geotagged social media (Twitter) as an innovative approach for human spatial behavior. This research tracks pre-event Twitter users’ locations to produce estimates on the number of (pre-event) evacuees, and their post-disaster locations to estimate the number of displaced people, and the impact of a disaster on tourist visitations.
Downloads
Article Details
References
Adey, P. (2016). Emergency mobilities. Mobilities, 11(1), 32–48. https://doi.org/10.1080/17450101.2015.1103533
Adger, W. N., de Campos, R. S., & Mortreux, C. (2018). Mobility, displacement and migration, and their interactions with vulnerability and adaptation to environmental risks. In R. McLeman & F. Gemenne (Eds.), Routledge Handbook of Environmental Displacement and Migration (pp. 29–41). New York: Routledge. https://doi.org/10.4324/9781315638843-3
Amini, A., Kung, K., Kang, C., Sobolevsky, S., & Ratti, C. (2014). The impact of social segregation on human mobility in developing and industrialized regions. EPJ Data Science, 3(1), 1–20. https://doi.org/10.1140/epjds31
Andrienko, N., Andrienko, G., Stange, H., Liebig, T., & Hecker, D. (2012). Visual analytics for understanding spatial situations from episodic movement data. KI-Künstliche Intelligenz, 26(3), 241–251. https://doi.org/10.1007/s13218-012-0177-4
Archibald, E., & McNeil, S. (2012). Learning from traffic data collected before, during and after a hurricane. IATSS Research, 36(1), 1–10. https://doi.org/10.1016/j.iatssr.2012.06.002
Arlikatti, S., Lindell, M. K., Prater, C. S., & Zhang, Y. (2006). Risk area accuracy and hurricane evacuation expectations of coastal residents. Environment and Behavior, 38(2), 226–247. https://doi.org/10.1177/0013916505277603
Baker, E. J. (2009). Acquiring data on travel behaviour during emergencies and exceptional events. In P. Bonnel, M. Lee-Gosselin, J. Zmud, & J. L. Madre (Eds.), Transport Survey Methods: Keeping up with a Changing World (pp. 197–211). Bingley: Emerald Group Publishing Limited. https://doi.org/10.1108/9781848558458-011
Bajardi, P., Delfino, M., Panisson, A., Petri, G., & Tizzoni, M. (2015). Unveiling patterns of international communities in a global city using mobile phone data. EPJ Data Science, 4(3), 1–17. https://doi.org/10.1140/epjds/s13688-015-0041-5
Bauman, Z. (1996). From pilgrim to tourist–or a short history of identity. Questions of Cultural Identity, 1, 18–36. https://doi.org/10.4135/9781446221907.n2
Bengtsson, L., Lu, X., Thorson, A., Garfield, R., & Von Schreeb, J. (2011). Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in Haiti. PLoS Medicine, 8(8), e1001083. https://doi.org/10.1371/journal.pmed.1001083
Birenboim, A., & Shoval, N. (2016). Mobility research in the age of the smartphone. Annals of the American Association of Geographers, 106(2), 283–291. https://doi.org/10.1080/00045608.2015.1100058
Black, R., Arnell, N. W., Adger, W. N., Thomas, D., & Geddes, A. (2013). Migration, immobility and displacement outcomes following extreme events. Environmental Science & Policy, 27, S32–S43. https://doi.org/10.1016/j.envsci.2012.09.001
Bowser, G. C. (2013). Determining the differences in hurricane perception and evacuation behavior in the elderly of South Carolina (Doctoral dissertation). University of South Carolina, Columbia, SC, USA. Retrieved from https://scholarcommons.sc.edu/etd/2534
Brommer, D. M., & Senkbeil, J. C. (2010). Pre-landfall evacuee perception of the meteorological hazards associated with Hurricane Gustav. Natural Hazards, 55(2), 353–369. https://doi.org/10.1007/s11069-010-9532-7
Bowser, G. C., & Cutter, S. L. (2015). Stay or go? Examining decision making and behavior in hurricane evacuations. Environment: Science and Policy for Sustainable Development, 57(6), 28–41. https://doi.org/10.1080/00139157.2015.1089145
Burton, I., & Hewitt, K. (1971). The hazardousness of a place: a regional ecology of damaging events. Toronto: University of Toronto Press.
Burton, S. H., Tanner, K. W., Giraud–Carrier, C. G., West, J. H., & Barnes, M. D. (2012). "Right time, right place" health communication on Twitter: Value and accuracy of location information. Journal of Medical Internet Research, 14(6). https://doi.org/10.2196/jmir.2121
Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., & Scott, J. (2007). Impact of human mobility on opportunistic forwarding algorithms. IEEE Transactions on Mobile Computing, 6, 606–620. https://doi.org/10.1109/infocom.2006.172
Çolak, S., Lima, A., & González, M. C. (2016). Understanding congested travel in urban areas. Nature Communications, 7, 10793. https://doi.org/10.1038/ncomms10793
Cooper, M., Biehl, J., Filby, G., & Kratz, S. (2016). LoCo: Boosting for indoor location classification combining Wi-Fi and BLE. Personal and Ubiquitous Computing, 20(1), 83–96. https://doi.org/10.1007/s00779-015-0899-z
Cresswell, T. (2011). Mobilities I: Catching up. Progress in Human Geography, 35(4), 550–558. https://doi.org/10.1177/0309132510383348
Cutter, S. L., Emrich, C. T., Bowser, G. C., Angelo, D., & Mitchell, J. T. (2011). South Carolina hurricane evacuation behavioral study. Retrieved from http://webra.cas.sc.edu/hvri/docs/HES_2011_Final_Report.pdf
D’Ambrosio, R. (2018, May 14). As hurricane season nears, travel agents wonder if Puerto Rico is ready. Travelmarket. Retrieved from https://www.travelmarketreport.com/articles/As-Hurricane-Season-Nears-Travel-Agents-Wonder-if-Puerto-Rico-Is-Ready
Dow, K., & Cutter, S. L. (1998). Crying wolf: Repeat responses to hurricane evacuation orders. Coastal Management, 26(4), 237–52. https://doi.org/10.1080/08920759809362356
Dow, K., & Cutter, S. L. (2000). Public orders and personal opinions: Household strategies for hurricane risk assessment. Global Environmental Change Part B: Environmental Hazards, 2(4), 143–155. https://doi.org/10.1016/S1464-2867(01)00014-6
Dow, K., & Cutter, S. L. (2002). Emerging hurricane evacuation issues: Hurricane Floyd and South Carolina. Natural Hazards Review, 3(1), 12–18. https://doi.org/10.1061/(ASCE)1527-6988(2002)3:1(12)
Dueker, D., Taher, M., Wilson, J., & McConnell, R. (2014). Evaluating children’s location using a personal GPS logging instrument: limitations and lessons learned. Journal of Exposure Science and Environmental Epidemiology, 24(3), 244. https://doi.org/10.1038/jes.2013.11
Durage, S. W., Kattan, L., Wirasinghe, S. C., & Ruwanpura, J. Y. (2014). Evacuation behaviour of households and drivers during a tornado. Natural Hazards, 71(3), 1495–1517. https://doi.org/10.1007/s11069-013-0958-6.
Echenique, M., & Melgar, L. (2018, May 11). Mapping Puerto Rico’s hurricane migration with mobile phone data. CityLab. Retrieved from https://www.citylab.com/environment/2018/05/watch-puerto-ricos-hurricane-migration-via-mobile-phone-data/559889/?utm_source=SFFB
Elgethun, K., Yost, M. G., Fitzpatrick, C. T., Nyerges, T. L., & Fenske, R. A. (2007). Comparison of Global Positioning System (GPS) Tracking and Parent-Report Diaries to Characterize Children’s Time-Location Patterns. Journal of Exposure Science & Environmental Epidemiology, 17, 196–206. https://doi.org/10.1038/sj.jes.7500496
Estébanez Álvarez, J. (1990) Tendencias y problemática actual de la geografía. Madrid: Cincel.
Falcón-Lezama, J. A., Santos-Luna, R., Román-Pérez, S., Martínez-Vega, R. A., Herrera-Valdez, M. A., Kuri-Morales, Á. F., ... & Ramos-Castañeda, J. (2017). Analysis of spatial mobility in subjects from a Dengue endemic urban locality in Morelos State, Mexico. PloS ONE, 12(2), e0172313. https://doi.org/10.1371/journal.pone.0172313
Finch, C., Emrich, C. T., & Cutter, S. L. (2010). Disaster disparities and differential recovery in New Orleans. Population and Environment, 31(4), 179–202. https://doi.org/10.1007/s11111-009-0099-8
Fussell, E., Sastry, N., & VanLandingham, M. (2010). Race, socioeconomic status, and return migration to New Orleans after Hurricane Katrina. Population and Environment, 31(1–3), 20–42. https://doi.org/10.1007/s11111-009-0092-2
Gerber, M. S. (2014). Predicting crime using Twitter and kernel density estimation. Decision Support Systems, 61, 115–125. https://doi.org/10.1016/j.dss.2014.02.003
Gething, P. W., & Tatem, A. J. (2011). Can mobile phone data improve emergency response to natural disasters?. PLoS medicine, 8(8), e1001085. https://doi.org/10.1371/journal.pmed.1001085
Gladwin, H., & Peacock W. G. (1997) Warning and evacuation: A night for hard houses. In W. G. Peacock, B. Morrow & H. Gladwin (Eds.) Hurricane Andrew: Gender, ethnicity and the sociology of disasters (pp. 52–74). New York: Routledge.
Golledge, R. G., & Stimson, R. J. (1997). Spatial behavior: A geographic perspective. London: The Guilford Press.
Gong, Y., Lin, Y., & Duan, Z. (2017). Exploring the spatiotemporal structure of dynamic urban space using metro smart card records. Computers, Environment and Urban Systems, 64, 169–183. https://doi.org/10.1016/j.compenvurbsys.2017.02.003
González, M. C., Hidalgo, C. A., & Barabási, A.-L., (2008). Understanding individual human mobility patterns. Nature, 453, 779–782. https://doi.org/10.1038/nature06958
Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221. https://doi.org/10.1007/s10708-007-9111-y
Government of Puerto Rico. (2018). Puerto Rico disaster recovery action plan. Retrieved from http://www.cdbg-dr.pr.gov/wp-content/uploads/2018/07/HUD-Approved-Action-Plan_EN.pdf
Groen, J. A., & Polivka, A. E. (2010). Going home after Hurricane Katrina: Determinants of return migration and changes in affected areas. Demography, 47(4), 821–844. https://doi.org/10.1007/BF03214587
Harvey, D. (1989). The Condition of Postmodernity. An Enquiry into the Origins of Cultural Change. Oxford: Blackwell.
Hecht, B. J., & Stephens, M. (2014). A tale of cities: Urban biases in volunteered geographic information. ICWSM, 14, 197–205.
Hinojosa, J., & Meléndez, E. (2018). Puerto Rican exodus: One year since Hurricane Maria. Retrieved from https://centropr.hunter.cuny.edu/sites/default/files/RB2018-05_SEPT2018%20%281%29.pdf
Isaacson, M., & Shoval, N. (2006). Application of tracking technologies to the study of pedestrian spatial behavior. The Professional Geographer, 58(2), 172–183. https://doi.org/10.1111/j.1467-9272.2006.00524.x
Jiang, Y., Li, Z., & Ye, X. (2018). Understanding demographic and socioeconomic biases of geotagged Twitter users at the county level. Cartography and Geographic Information Science, 1–15. https://doi.org/10.1080/15230406.2018.1434834
Johnson, T. P., & Wislar, J. S. (2012). Response rates and nonresponse errors in surveys. Journal of the American Medical Association, 307(17), 1805–1806. https://doi.org/10.1001/jama.2012.3532
Jurdak, R., Zhao, K., Liu, J., AbouJaoude, M., Cameron, M., & Newth, D. (2015). Understanding human mobility from Twitter. PLoS ONE, 10, e0131469. https://doi.org/10.1371/journal.pone.0131469
Kates, R. W. 1962. Hazard and choice perception in flood plain management (University of Chicago, Department of Geography Research Paper, No. 78).
Kishore, N., Marqués, D., Mahmud, A., Kiang, M. V., Rodriguez, I., Fuller, A., … Buckee, C.O. (2018). Mortality in Puerto Rico after Hurricane Maria. New England Journal of Medicine, 379, 162–170. https://doi.org/10.1056/NEJMsa1803972
Kontokosta, C. E., & Johnson, N. (2017). Urban phenology: Toward a real-time census of the city using Wi-Fi data. Computers, Environment and Urban Systems, 64, 144–153. https://doi.org/10.1016/j.compenvurbsys.2017.01.011
Kumar, D., & Ukkusuri, S. V. (2018, April). Utilizing geo-tagged tweets to understand evacuation dynamics during emergencies: A case study of Hurricane Sandy. In Companion Proceedings of the Web Conference 2018 (pp. 1613–1620). Lyon, France. https://doi.org/10.1145/3184558.3191619
Laczko, F. (2015). Factoring migration into the development data revolution. Journal of International Affairs, 68(2), 1.
Li, Z., Wang, C., Emrich, C. T., & Guo, D. (2018). A novel approach to leveraging social media for rapid flood mapping: A case study of the 2015 South Carolina floods. Cartography and Geographic Information Science, 45(2), 97–110. https://doi.org/10.1080/15230406.2016.1271356
Lima, V. V., Miranda, J. M., Baptista, M. A., Catalão, J., González Rodríguez, E. M., Otero, L., ... & Carreño Herrero, E. (2010). Impact of a 1755-like tsunami in Huelva, Spain. Natural Hazards and Earth System Science, 10, 139–148. https://doi.org/10.5194/nhess-10-139-2010
Lindell, M. K., Kang, J. E., & Prater, C. S. (2011). The logistics of household hurricane evacuation. Natural Hazards, 58(3), 1093–1109. https://doi.org/10.1007/s11069-011-9715-x
Manning, P. (2012). Migration in world history. New York: Routledge.
Martín, Y., Li, Z., & Cutter, S. L. (2017). Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis of Hurricane Matthew. PLoS ONE, 12, e0181701. https://doi.org/10.1371/journal.pone.0181701
Martín, Y., Cutter, S. L., & Li, Z. (2020). Bridging social media and survey data for the evacuation assessment of Hurricane Matthew and Hurricane Irma. Natural Hazards Review, 21(2). https://doi.org/10.1061/(ASCE)NH.1527-6996.0000354
McLeman, R., & Gemenne, F. (Eds.). (2018). Routledge handbook of environmental displacement and migration. Routledge. https://doi.org/10.4324/9781315638843
Mislove, A., Lehmann, S., Ahn, Y. Y., Onnela, J. P., & Rosenquist, J. N. (2011). Understanding the demographics of Twitter users. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media. Barcelona, Spain. Retrieved from http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/viewFile/2816/3234
Mitchell, J. T., Cutter, S. L., & Edmonds, A. S. (2007). Improving shadow evacuation management: Case study of the Graniteville, South Carolina chlorine spill. Journal of Emergency Management, 5(1), 28–34. https://doi.org/10.5055/jem.2007.0041
Moon, H., Kim, C., & Lee, W. (2016). A UAV based 3-D positioning framework for detecting locations of buried persons in collapsed disaster area. international archives of the photogrammetry, Remote Sensing and Spatial Information Sciences, 41. https://doi.org/10.5194/isprsarchives-XLI-B8-121-2016
National Hurricane Center (NHC). (2018). NHC Data in GIS Formats. Retrieved from https://www.nhc.noaa.gov/gis/
National Institute of Standards and Technology (NIST). (2017). Hurricane Maria (2017): Preliminary Peak Wind Gust. Retrieved from https://www.nist.gov/sites/default/files/documents/2018/02/20/03_update_on_preliminary_r econnaissance_of_hurricane_maria_puerto_rico.pdf
Pasch, R., Penny, A., & Berg, R. (2018). Hurricane Maria (AL 152017). Retrieved from https://www.nhc.noaa.gov/data/tcr/AL152017_Maria.pdf
Paz-Soldan, V. A., Reiner Jr, R. C., Morrison, A. C., Stoddard, S. T., Kitron, U., Scott, T. W., ... & Vazquez-Prokopec, G. M. (2014). Strengths and weaknesses of Global Positioning System (GPS) data-loggers and semi-structured interviews for capturing fine-scale human mobility: findings from Iquitos, Peru. PLoS neglected tropical diseases, 8(6), e2888. https://doi.org/10.1371/journal.pntd.0002888
Perttunen, M., Kostakos, V., Riekki, J., & Ojala, T. (2014). Spatio-temporal patterns link your digital identities. Computers, Environment and Urban Systems, 47, 58–67. https://doi.org/10.1016/j.compenvurbsys.2013.12.004
Phithakkitnukoon, S., Smoreda, Z., & Olivier, P. (2012). Socio-geography of human mobility: A study using longitudinal mobile phone data. PloS one, 7(6), e39253. https://doi.org/10.1371/journal.pone.0039253
Rango, M., & Vespe, M. (2017). Big Data and Alternative Data Sources on Migration: From Case-Studies to Policy Support (Summary report European Commission – Joint Research Centre) Retrieved from https://gmdac.iom.int/big-data-and-alternative-data-sources-on-migration-from-case-studies-to-policy-support
San Carlos Arce, R., Onuki, M., Esteban, M., & Shibayama, T. (2017). Risk awareness and intended tsunami evacuation behaviour of international tourists in Kamakura City, Japan. International Journal of Disaster Risk Reduction, 23, 178–92. https://doi.org/10.1016/j.ijdrr.2017.04.005
Shareck, M., Kestens, Y., & Gauvin, L. (2013). Examining the spatial congruence between data obtained with a novel activity location questionnaire, continuous GPS tracking, & prompted recall surveys. International Journal of Health Geographics, 12(40). https://doi.org/10.1186/1476-072X-12-40
Shoval, N., McKercher, B., Ng, E., & Birenboim, A. (2011). Hotel location and tourist activity in cities. Annals of Tourism Research, 38(4), 1594–1612. https://doi.org/10.1016/j.annals.2011.02.007
Siebeneck, L. K., & Cova, T. J. (2012). Spatial and temporal variation in evacuee risk perception throughout the evacuation and return-entry process. Risk Analysis, 32(9), 1468–80. https://doi.org/10.1111/j.1539-6924.2011.01781.x
Slovic, P. (1987). Perception of risk. Science, 236(4799), 280–85. https://doi.org/10.1126/science.3563507
Sorensen, J. H., & Mileti, D. S. (1988). Warning and evacuation: Answering some basic questions. Industrial Crisis Quarterly, 2, 195–209. https://doi.org/10.1177/108602668800200302
Smith, S. K., & McCarty, C. (2009). Fleeing the storm(s): An examination of evacuation behavior during Florida’s 2004 hurricane season. Demography, 46, 127–145. https://doi.org/10.1353/dem.0.0048
Sobolevsky, S., Sitko, I., Des Combes, R. T., Hawelka, B., Arias, J. M., & Ratti, C. (2014). Money on the move: Big data of bank card transactions as the new proxy for human mobility patterns and regional delineation. the case of residents and foreign visitors in Spain. In Proceedings of the 2014 IEEE International Congress on Big Data (pp. 136–143). IEEE. Washington, DC, USA. https://doi.org/10.1109/BigData.Congress.2014.28
Solares, J. M., & Arroyo, A. L. (2004). The great historical 1755 earthquake. Effects and damage in Spain. Journal of Seismology, 8(2), 275–294.
South Carolina Department of Transportation (SCDOT). (2017). Average annual daily traffic. Retrieved from https://www.scdot.org/default.aspx
Spence, P. R., Lachlan, K. A., & Rainear, A. M. (2016). Social media and crisis research: Data collection and directions. Computers in Human Behavior, 54, 667–672. https://doi.org/10.1016/j.chb.2015.08.045
Spyratos, S., Vespe, M., Natale, F., Ingmar, W., Zagheni, E., & and Rango, M. (2018). Migration data using social media: A European perspective (EUR 29273 EN). https://doi.org/10.2760/964282
Stanton, M. C., Yamauchi, M., Mkwanda, S. Z., Ndhlovu, P., Matipula, D. E., Mackenzie, C., & Kelly-Hope, L. A. (2017). Measuring the physical and economic impact of filarial lymphoedema in Chikwawa district, Malawi: A case-control study. Infectious Diseases of Poverty, 6(1), 28. https://doi.org/10.1186/s40249-017-0241-2
State, B., Weber, I., & Zagheni, E. (2013, February). Studying inter-national mobility through IP geolocation. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining. (pp. 265–274). ACM. Rome, Italy. https://doi.org/10.1145/2433396.2433432
Stewart, S. R. (2017). Hurricane Matthew (AL142016). Retrieved from http://www.nhc.noaa.gov/data/tcr/AL142016_Matthew.pdf
Stone, L. (2017). How low will Puerto Rico’s population go? Retrieved from https://medium.com/migration-issues/how-low-will-puerto-ricos-population-go-c8d108ac8b3b
Tamima, U., & Chouinard, L. (2016). Development of evacuation models for moderate seismic zones: A case study of Montreal. International Journal of Disaster Risk Reduction, 16, 167–79. https://doi.org/10.1016/j.ijdrr.2016.02.003
Tourism Economics. (2019). Economic Impacts of Visitor Spending in Puerto Rico. Retrieved from http://www.puertoricodmo.com/DMOLanding/wp-content/uploads/2019/05/Analysis-Puerto-Rico-Visitor-Economic-Impact.pdf
Ukkusuri, S. V., Zhan, X., Sadri, A. M., & Ye, Q. (2014). Use of social media data to explore crisis informatics: Study of 2013 Oklahoma Tornado. Transportation Research Record, 2459(1), 110–118. https://doi.org/10.3141/2459-13
United States Census Bureau (2018). December 19, 2018. Release number CB18-193. Retrieved from https://www.census.gov/newsroom/press-releases/2018/estimates-national-state.html
Vazquez-Prokopec, G. M., Stoddard, S. T., Paz-Soldan, V., Morrison, A. C., Elder, J. P., Kochel, T. J., Scott, T.W., & Kitron, U. (2009). Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. International Journal of Health Geographics, 8(1), 68. https://doi.org/10.1186/1476-072x-8-68
Vogel, N., Theisen, C., Leidig, J. P., Scripps, J., Graham, D. H., & Wolffe, G. (2015). mining mobile datasets to enable the fine-grained stochastic simulation of ebola diffusion. Procedia Computer Science, 51, 765–774. https://doi.org/10.1016/j.procs.2015.05.197
Wang, H., Zhang, X., Wu, L., Hou, C., Gong, H., Zhang, Q., & Ouyang, M. (2015). Beijing passenger car travel survey: Implications for alternative fuel vehicle deployment. Mitigation and Adaptation Strategies for Global Change, 20(5), 817–835. https://doi.org/10.1007/s11027-014-9609-9
Wang, Q., & Taylor, J. E. (2014). Quantifying, comparing human mobility perturbation during Hurricane Sandy, Typhoon Wipha, Typhoon Haiyan. Procedia Economics and Finance, 18, 33–38. https://doi.org/10.1016/S2212-5671(14)00910-1
Wang, Q., & Taylor, J. E. (2016). Patterns and limitations of urban human mobility resilience under the influence of multiple types of natural disaster. PLoS ONE, 11(1), e0147299. https://doi.org/10.1371/journal.pone.0147299
Wesolowski, A., Eagle, N., Tatem, A. J., Smith, D. L., Noor, A. M., Snow, R. W., & Buckee, C. O. (2012). Quantifying the impact of human mobility on malaria. Science, 338(6104), 267–270. https://doi.org/10.1126/science.1223467
White, G. F. (1945). Human adjustments to floods: A geographical approach to the flood problem in the United States. Research Paper No. 29. Chicago: Department of Geography, University of Chicago. Retrieved from https://biotech.law.lsu.edu/climate/docs/Human_Adj_Floods_White.pdf
Widener, M. J., & Li, W. (2014). Using geolocated Twitter data to monitor the prevalence of healthy and unhealthy food references across the US. Applied Geography, 54, 189–197. https://doi.org/10.1016/j.apgeog.2014.07.017
Widhalm, P., Yang, Y., Ulm, M., Athavale, S., & González, M. C. (2015). Discovering urban activity patterns in cell phone data. Transportation, 42(4), 597–623. https://doi.org/10.1007/s11116-015-9598-x
Willoughby, H. E. (2012). Distributions and trends of death and destruction from hurricanes in the United States, 1900–2008. Natural Hazards Review, 13(1), 57–64. doi:10.1061/(ASCE)NH.1527-6996.0000046
Wolshon, B., & Pande, A. (2016). Traffic Engineering Handbook. John Wiley & Sons.
Yabe, T., Sekimoto, Y., Tsubouchi, K., & Ikemoto, S. (2019). Cross-comparative analysis of evacuation behavior after earthquakes using mobile phone data. PLoS one, 14(2), e0211375. https://doi.org/10.1371/journal.pone.0211375s
Zeigler, D. J., Brunn, S. D., & Johnson, J. H., Jr. (1981). Evacuation from a nuclear technological disaster. Geographical Review, 71, 1–16. https://doi.org/10.2307/214548
Zhang, Y., Prater, C. S., & Lindell, M. K. (2004). Risk area accuracy and evacuation from Hurricane Bret. Natural Hazards Review, 5(3), 115–120. https://doi.org/10.1061/(asce)1527-6988(2004)5:3(115)
Zhong, C., Manley, E., Arisona, S. M., Batty, M., & Schmitt, G. (2015). Measuring variability of mobility patterns from multiday smart-card data. Journal of Computational Science, 9, 125–130. https://doi.org/10.1016/j.jocs.2015.04.02