Geolocalized Tweets for assessing daily mobility: methodology to analyse and detect homelocation in the urban area of Valencia

Main Article Content

Carmen Zornoza Gallego
Julia Salom Carrasco

Abstract

Geolocalized data from social network Twitter is analyzed with the aim of studying its possible use in a daily mobility pattern investigation. The area for the practical application is Valencia’s urban area, Spain. Based on the previous analysis, a methodological proposal is created to the use of data, focused on the detection of the user’s home location, a core information in a mobility study. The proper adjustment of the results with the sources of evidences validates the methodology and shows that the possibilities of this information are vast.



Downloads

Download data is not yet available.

Article Details

How to Cite
Zornoza Gallego, C., & Salom Carrasco, J. (2018). Geolocalized Tweets for assessing daily mobility: methodology to analyse and detect homelocation in the urban area of Valencia. Boletín De La Asociación Española De Geografía, (79). https://doi.org/10.21138/bage.2464

References

Béjar, J., Álvarez, S., García, D., Gómez, I., Oliva, L., Tejeda, A., & Vázquez-Salceda, J. (2016). Discovery of spatio-temporal patterns from location-based social networks. Journal of Experimental & Theoretical Artificial Intelligence, 28(1–2), 313–329. https://doi.org/10.1080/0952813X.2015.1024492

Bojic, I., Massaro, E., Belyi, A., Sobolevsky, S., & Ratti, C. (2015). Choosing the Right Home Location Definition Method for the Given Dataset (pp. 194–208). In T.Y. Liu, C. Scollon & W. Zhu (Eds.), Social Informatics. SocInfo 2015. Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-319-27433-1_14

Frias-Martinez, V., & Frias-Martinez, E. (2014). Spectral clustering for sensing urban land use using Twitter activity. Engineering Applications of Artificial Intelligence, 35, 237–245. https://doi.org/10.1016/j.engappai.2014.06.019

Gabrielli, L., Rinzivillo, S., Ronzano, F., & Villatoro, D. (2014). From Tweets to Semantic Trajectories: Mining Anomalous Urban Mobility Patterns. In Jordi Nin & Daniel Villatoro (Eds.), Citizen in Sensor Networks (pp. 26–35). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-04178-0_3

García-Palomares, J. C., Gutiérrez, J., & Mínguez, C. (2015). Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and GIS. Applied Geography, 63, 408–417. https://doi.org/10.1016/j.apgeog.2015.08.002

Goodchild, M. (2007). Citiziens as sensors: the word of volunteered geography. GeoJournal, 69, 211–221. https://doi.org/10.1007/s10708-007-9111-y

Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A. L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779–782. https://doi.org/10.1038/nature06958

Gutiérrez-Puebla, J., García-Palomares, J. C., & Salas-Olmedo, M. H. (2016). Big (Geo)Data in Social Sciences:Challenges and Opportunities. Revista de estudios andaluces, 33, 1–23. http://dx.doi.org/10.12795/rea.2016.i33.01

Hasan, S., Zhan, X., & Ukkusuri, S. V. (2013, August). Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In Proceedings of the 2nd ACM SIGKDD international workshop on urban computing (pp. 1–8). Chicago. https://doi.org/10.1145/2505821.2505823

Huang, W., Li, S., Liu, X., & Ban, Y. (2015). Predicting human mobility with activity changes. International Journal of Geographical Information Science, 29(9), 1569–1587. https://doi.org/10.1080/13658816.2015.1033421

Jurdak, R., Zhao, K., Liu, J., AbouJaoude, M., Cameron, M., & Newth, D. (2015). Understanding human mobility from Twitter. PloS one, 10(7), e0131469. https://doi.org/10.1371/journal.pone.0131469

Kwan, M. P. (1999). Gender, the home-work link, and space-time patterns of nonemployment activities. Economic geography, 75(4), 370–394. https://doi.org/10.1111/j.1944-8287.1999.tb00126.x

Masquenegocio. (2016, January). Twitter users in Spain [PDF report]. Retrieved from http://www.masquenegocio.com/wp-content/uploads/2016/01/Twitter-en-Espan%CC%83a.pdf

Song, C., Qu, Z., Blumm, N., & Barabási, A. L. (2010). Limits of predictability in human mobility. Science, 327(5968), 1018–1021. https://doi.org/10.1126/science.1177170

Li, S., Dragicevic, S., Castro, F., Sesterd, M., Wintere,S., Coltekin, A., … Chengi, T. (2016). Geospatial big data handling theory and methods: A review and research challenges. Isprs journal of photogrammetry and remote sensing, 115, 119–133. https://doi.org/10.1016/j.isprsjprs.2015.10.012

Llorente, A., Garcia-Herranz, M., Cebrian, M., & Moro, E. (2015). Social media fingerprints of unemployment. PloS one, 10(5), e0128692. https://doi.org/10.1371/journal.pone.0128692

Serrano Estrada, L., Serrano Salazar, S., & Álvarez Álvarez, F. J. (2014). Las redes sociales y los SIG como herramientas para conocer las preferencias sociales en las ciudades turísticas: el caso de Benidorm. Presented at the XVI Congreso Nacional de Tecnologías de Información Geográfica (pp. 1005–1012). Alicante, Spain, June 25–27. Madrid: Asociación de Geógrafos Españoles.