Analysing proximity to public transport: the role of street network design

Main Article Content

Juan Carlos García-Palomares
Joao Sousa Ribeiro
Javier Gutiérrez
Teresa Sá Marques

Abstract

The proximity of homes and employment to public transport networks is a key factor in explaining ridership. One of the most frequent strategies for increasing proximity to public transport is to densify the immediate station environment. However, proximity can also be created through the design of the street network in new urban developments. This article analyses the impact of urban design on public transport network coverage and its potential demand by comparing the real situation of the Madrid Metro network with four hypothetical scenarios representing different types of street network: irregular with high density, irregular with low density, orthogonal and station-oriented. By keeping the distribution of population and employment constant, the differences between the real scenario and each of the hypothetical ones can be explained entirely by the role played by the design of the urban fabric. A series of indicators have been calculated to measure the extent of the impact of street network design on the proximity to public transport: surface of the coverage areas, population and employment covered according to proximity bands, access quality and potential demand. The results obtained show that the station-oriented street system would lead to a substantial increase in population and employment in the first coverage bands, thereby generating a highly significant increase in the potential demand for public transport.



Downloads

Download data is not yet available.

Article Details

How to Cite
García-Palomares, J. C., Sousa Ribeiro, J., Gutiérrez, J., & Sá Marques, T. (2018). Analysing proximity to public transport: the role of street network design. Boletín De La Asociación Española De Geografía, (76), 102-130. https://doi.org/10.21138/bage.2517

References

Alshalalfah, B., & Shalaby, A. (2007). Case study: Relationship of walk access distance to transit with service, travel, and personal characteristics. Journal of Urban Planning and Development, 133(2), 114-118.

Bernick, M., & Cervero, R. (1997). Transit villages in the 21st century. New York, NY: MGraw-Hill.

Bertolini, L., Le Clercq, F., & Kapoen, L. (2005). Sustainable accessibility: a conceptual framework to integrate transport and land use plan-making. Two test-applications in the Netherlands and a reflection on the way forward. Transport Policy, 12(3), 207-220.

Biba, S., Curtin, K. M., & Manca, G. (2010). A new method for determining the population with walking access to transit. International Journal of Geographical Information Science, 24(3), 347 364.

Burke, M., & Brown, A.L. (2007). Distances people walk for transport. Road and Transport Research, 16(3), 16-28.

Cervero, R. (2004). Transit-oriented development in the United States: experiences, challenges, and prospects. Transportation Research Board vol. 102

Cervero, R. (2007). Transit-oriented development’s ridership bonus: a product of self-selection and public policies. Environment and Planning A, 39(9), 2068–2085.

Cervero, R., & Kockelman, K. (1997). Travel Demand and the 3Ds: Density, Diversity, and Design. Transportation Research D, 2, 199-219.

Cervero, R., Ferrell, C., & Murphy, S. (2002). Transit-oriented development and joint development in the United States: A literature review. TCRP research results digest, nº 52.

Chapleau, R., & Morency, C. (2005). Dynamic spatial analysis of urban travel survey data using GIS. In 25th Annual ESRI International User Conference, San Diego, California (pp. 1-14).

Chorus, P., & Bertolini, L. (2016)- Developing transit-oriented corridors, insights from Tokyo. International Journal of Sustainable Transportation, 10(2), 86-95.

Chu, X. (2004). Ridership models at the stop level. National Center of Transit Research, University of South Florida.

Currie, G. (2006). Bus transit oriented development. Strengths and challenges relative to rail. Journal of Public Transportation, 9(4), 1-22

Curtis, C., Renne, J. L., & Bertolini, L. (Eds.) (2009). Transit oriented development: making it happen. Ashgate Publishing.

Daniels, R., & Mulley, C. (2013). Explaining walking distance to public transport: The dominance of public transport supply. Journal of Transport and Land Use, 6(2), 5-20.

El-Geneidy, A., Grimsrud, M., Wasfi, R., Tétreault, P., & Surprenant-Legault, J. (2014). New evidence on walking distances to transit stops: Identifying redundancies and gaps using variable service areas. Transportation, 41(1), 193-210.

Ewing, R., & Cervero, R. (2001). Travel and the built environment: a synthesis. Journal of the Transportation Research Board, 1780(1), 87-114.

Ewing, R., & Cervero, R. (2002). Travel and the built environment: A synthesis. Transportation Research Record, 1780, 87-113.

Ewing, R., & Cervero, R. (2010). Travel and the built environment: a meta-analysis. Journal of the American Planning Association, 76(3), 265-294.

Fitzpatrick, K., Perkinson, D., & Hall, K. (1997). Findings from a survey on bus stop design. Journal of Public Transportation, 1(3), 17-27.

García-Palomares, J. C., Gutiérrez, J. And Cardozo, O. (2013). Walking accessibility to public transport: an analysis based on microdata and GIS. Environment and Planning B, 40, 1087-1102.

Guerra, E., Cervero, R., & Tischler, D. (2012). Half-mile circle. Journal of the Transportation Research Board, 2276(1), 101-109.

Gutiérrez, J., & García-Palomares, J. C. (2008). Distance measure impacts of public transport service areas. Environment and Planning B, 35, 480-503

Gutiérrez, J., Cardozo, O., & García-Palomares, J. C. (2011). Transit ridership forecasting at station level: an approach based on distance-decay weighted regression. Journal of Transport Geography, 19, 1081-1092.

Handy, S., Cao, X. Y., & Mokhtarian, P. (2005). Correlation or causality between the built environment and travel behavior? Evidence from northern California. Transportation Research D, 10, 427-444.

Horner, M. W., & Murray, A. T. (2004). Spatial representation and scale impacts in transit service assessment. Environment and Planning B, 31, 785-797.

Hsiao, S. L., Sterling, J. J., & Weatherford, M. (1997). Use of Geographic Information Systems for analysis of transit pedestrian access. Transportation Research Record, 1604, 50-59.

Jacobson, J., & Forsyth, A. (2008). Seven American TODs: Good practices for urban design in transit-oriented development projects. Journal of Transport and Land Use, 1(2).

Keijer, M. J. N., & Rietveld, R. (2000). How do people get to the railway station? The Dutch experience. Transportation Planning and Technology, 3(23), 215-135.

Khattak, A., & Rodríguez, D. (2005). Travel behavior in neo-traditional neighborhoods: A case study in USA. Transportation Research A, 39(6), 481-500.

Kimpel, T., Dueker, K., & El-Geneidy, A. (2007). Using GIS to measure the effect of overlapping service areas on passenger boardings at bus stops. Urban and Regional Information Systems Association Journal, 19(1), 5-11.

Kuby, M., Barranda, A., & Upchurch, C. (2004). Factors influencing light rail station boardings in the United States. Transportation Research A, 38, 223-247.

La Paix, L. C., & Geurs, K. T. (2015). Modelling observed and unobserved factors in cycling to railway stations: application to transit-oriented-developments in the Netherlands. European Journal of Transport and Infrastructure Research, 15(1), 27-50.

Lam, W., & J. Morrall (1982). Bus passenger walking distances and waiting times: A summerwinter comparison. Transportation Quarterly, 36(3), 407-421.

Lam, W., Morrall, J., & Ho, H. (1995). Pedestrian flow characteristics in Hong Kong. Transportation Research Record, 1487, 56-62.

Lamíquiz, P. J., & López-Domínguez, J. (2015). Effects of built environment on walking at the neighbourhood scale. A new role for street networks by modelling their configurational accessibility? Transportation Research A, 74, 148-163.

Larsen, J., El-Geneidy, A., & Yasmin, F. (2010). «Beyond the quarter mile: Re-examining travel distances by active transportation. Canadian Journal of Urban Research, 19(1), suppl., 70-88.

Litman, T. (2005). Land use impacts on transport: How land use factors affect travel behavior. Retrieved from http://www.vtpi.org/landtravel.pdf

Loutzenheiser, D. (1997). Pedestrian access to transit. Model to walk trips and their design and urban form determinants around Bay Area Rapid Transit Stations. Transportation Research Record, 1604, 40-49.

Mavoa, S., Witten, K., Mccreanor, T., & O’sullivan, D. (2012). GIS based destination accessibility via public transit and walking in Auckland, New Zealand. Journal of Transport Geography, 20(1), 15-22.

Miralles, C. (2002). Ciudad y transporte. El binomio imperfecto. Barcelona, Ariel.

Miralles, C., & Marquet, O. (2012). Ciudad compacta, la otra cara de la movilidad sostenible. Ambienta, 100, 16-27.

Mondou, V. (2001). Daily mobility and adequacy of the urban transportation network a GIS application. Cybergeo: European Journal of Geography, 192.

Murray, A. T. (2001). Strategic analysis of public transport coverage. Socio-Economic Planning Sciences, 35, 175-188.

Murray, A. T., Davis, R., & Stimson, R. J. (1998). Public transport access. Transportation Research D, 3(5), 319-328.

O’sullivan, S., & J. Morrall (1996). Walking Distances to and from Light-Rail Transit Stations. Transportation Research Record, 1538, 19-26.

Olaru, D., & Curtis, C. (2015). Designing TOD precincts: accessibility and travel patterns. European Journal of Transport and Infrastructure Research, 15(1), 6-26.

O'neill, W., Ramsey, D., & Chou J., (1992). Analysis of transit service areas using geographic information systems. Transportation Research Record, 1364, 131-139.

Papa, E., & Bertolini, L. (2015). Accessibility and Transit-Oriented Development in European metropolitan areas. Journal of Transport Geography, 47, 70-83.

Peng, Z., & Dueker, K. (1995). Spatial data integration in route-level transit demand modelling. Journal of the Urban and Regional Information Systems Association, 7, 26-37.

Pirie, G. H. (1979). Measuring accessibility: a review and proposal. Environment and Planning A, 11, 299-312.

Rastogi, R., & Krishna Rao, K. V. (2003). Travel characteristics of commuters accessing transit: Case study. Journal of Transportation Engineering, 129(6), 684-694.

Rodríguez, D. A. Brisson, E. M., & Estupiñán, N. (2009). The relationship between segment-level built environment attributes and pedestrian activity around Bogota’s BRT stations. Transportation Research D, 14(7), 470-478.

Saelens, B. E., Sallis, J. F., & FranK, L. D. (2003). Environmental correlates of walking and cycling: findings from the transportation, urban design, and planning literatures. Annals of Behavioral Medicine, 25(2), 80-91.

Soria-Lara, J., & Valenzuela-Montes, L. M. (2014). Más allá de la estructura urbana y del patrón de viaje. El "entorno de movilidad" como instrumento para la planificación y la evaluación. Boletín de la Asociación de Geógrafos Españoles, 64, 273-296.

Sung, H., Choi, K., Lee, S., & Cheon, S. (2014). Exploring the impacts of land use by service coverage and station-level accessibility on rail transit ridership. Journal of Transport Geography, 36, 134-140.

Suzuki, H., Cervero, R., & Luchi, K. (2013). Transforming cities with transit: Transit and land-use integration for sustainable urban development. World Bank Publications.

Talavera-Garcia, R., Soria-Lara, J. A., & Valenzuela-Montes, L. M. (2014). La calidad peatonal como método para evaluar entornos de movilidad urbana. Documents d'anàlisi geogràfica, 60(1), 161-187.

Talavera-Garcia, R., & Soria-Lara, J. A. (2015). Q-PLOS, developing an alternative walking index. A method based on urban design quality. Cities, 45, 7-17.

Talavera-Garcia, R., & Valenzuela-Montes, L. M. (2012). La accesibilidad peatonal en la integración espacial de las paradas de transporte público. Bitácora Urbano-Territorial, 21(2), 97-109

Tumlin, J., & Millard-Ball, A. (2003). How to make transit-oriented development work. Planning-Chicago, 69(5), 14–19

Upchurch, C., Kuby, M. Zoldak, M., & Barranda, A. (2004). Using GIS to generate mutually exclusive service areas linking travel on and off a network. Journal of Transport Geography, 12(1), 23-33.

Weinstein, A., Schlossberg, M., & Irvin, K. (2008). How far, by which route and why? A spatial analysis of pedestrian preference. Journal of Urban Design, 13(1), 81-98.

Wibowo, S. S., & Olszewski, P. (2005). Modelling walking accessibility to public transport terminals: Case study of Singapore mass rapid transit. Journal of the Eastern Asia Society for Transportation Studies, 6, 147-156.

Wu, C. S., & Murray, A. T. (2005). Optimizing public transit quality and system access: the multiple-route, maximal covering/shortest-path problem. Environment and Planning B, 32(2), 163 178.

Zhao, F., Chow, L. F., Li, M. T., Ubaka, I., & Gan, A. (2003). Forecasting transit walk accessibility: regression model alternative to buffer method. Journal of the Transportation Research Board, 1835, 34-41.