Impacto del calentamiento global en la distribución y supervivencia del pinsapo (Serranía de Ronda)

Contenido principal del artículo

Oliver Gutiérrez Hernández

Resumen

Tras la retirada de los hielos glaciares del Cuaternario, los abetos se replegaron hacia el norte o ascendieron en altitud hacia las montañas. Escindido del tronco común del abeto primigenio, Abies pinsapo persiste como especie relicta y endémica de la Serranía de Ronda, y una de las reliquias más meridionales de la aciculisilva. En este trabajo, desarrollamos un ensamblaje de modelos de nicho ecológico del pinsapo calibrados con datos actuales y proyectados hasta el horizonte 2100 según los escenarios previstos por el IPCC (AR5) regionalizados para el área de estudio. Nuestros modelos estimaron una drástica reducción de la distribución potencial de la especie en el área de estudio, incluso la desaparición del espacio ecológico del pinsapo en el peor de los escenarios.



Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Gutiérrez Hernández, O. (2018). Impacto del calentamiento global en la distribución y supervivencia del pinsapo (Serranía de Ronda). Boletín De La Asociación De Geógrafos Españoles, (76), 504-549. https://doi.org/10.21138/bage.2532

Bibliografía

Alba-Sánchez, F., López-Sáez, J. A., Benito de Pando, B., Linares, J. C., Nieto-Lugilde, D., y López-Merino, L. (2010). Past and present potential distribution of the Iberian Abies species: A phytogeographic approach using fossil pollen data and species distribution models. Diversity & Distributions, 16, 214-228.

Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., y Vazquez-Aguirre, J. L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111.

Alizoti, P.G., Fady, B., Prada, M. A., y Vendramin, G. G. (2011). EUFORGEN Technical Guidelines for genetic conservation and use of Mediterranean firs (Abies spp.). Biodiversity International.

Allouche, O., Tsoar, A., y Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.

Anderson, R. P., y Raza, A. (2010). The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: Preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography, 37, 1378-1393.

Araújo, M., y Whittaker, R. (2005). Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography, 14, 529-538.

Araújo, M. B., y Rahbek, C. (2006). How does climate change affect biodiversity? Science, 313, 1396-1397. doi: 10.1126/science.1131758

Asensi Marfil, A., y Díez Garretas, B. (1999). Biogeografía, bioclimatología y paisaje vegetal de la provincia de Málaga. En Elementos de Los Paisajes de La Provincia de Málaga (pp. 23-38). Málaga: Servicio de Publicaciones de Universidad de Málaga.

Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200, 1-19.

Barbosa, F. G., y Schneck, F. (2015). Characteristics of the top-cited papers in species distribution predictive models. Ecological Modelling, 313, 77-83. doi: 10.1016/j.ecolmodel.2015.06.014

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A.T., Soberón, J., y Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222, 1810-1819. doi: 10.1016/j.ecolmodel.2011.02.011

Benito, B. M., Lorite, J., Pérez-Pérez, R., Gómez-Aparicio, L., y Peñas, J. (2014). Forecasting plant range collapse in a mediterranean hotspot: When dispersal uncertainties matter. Diversity & Distribution, 20, 72-83. doi: 10.1111/ddi.12148

Bowles, G. (1782). Introducción a la historia natural y a la geografía física de España. Madrid: Imprenta Real.

Box, E. O. (1981). Predicting physiognomic vegetation types with climate variables. Vegetatio, 45, 127-139. doi: 10.1007/BF00119222

Breiman, L. (2001). Random forests. Journal of Machine Learning Research, 45, 5-32. doi: 10.1023/A:1010933404324

Buentgen, U., Brazdil, R., Heussner, K. U., Hofmann, J., Kontic, R., Kyncl, T., Pfister, C., Chroma, K., y Tegel, W. (2011). Combined dendro-documentary evidence of Central European hydroclimatic springtime extremes over the last millennium. Quaternary Science Reviews, 30, 3947-3959. doi: 10.1016/j.quascirev.2011.10.010

Bussotti, F., Ferrini, F., Pollastrini, M., y Fini, A. (2013). The challenge of Mediterranean sclerophyllous vegetation under climate change: From acclimation to adaptation. Environmental and Experimental Botany, 103, 80-98. doi: 10.1016/j.envexpbot.2013.09.013

Caudullo, G., y Tinner, W. (2016). Abies - Circum-Mediterranean firs in Europe: distribution, habitat, usage and threats. En European Atlas of Forest Tree Species. European Commission.

Cook, J., Oreskes, N., Doran, P. T., Anderegg, W. R. L., Verheggen, B., Maibach, E. W., Carlton, J. S., Lewandowsky, S., Skuce, A. G., y Sarah, A. (2016). Consensus on consensus: a synthesis of consensus estimates on human­caused global warming. Environmental Research Letters, 11, 1-24. doi: 10.1088/1748-9326/11/4/048002

Coumou, D., y Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate Change, 2, 491-496. doi: 10.1038/NCLIMATE1452

Crowley, T. J., y North, G. R. (1988). Abrupt Climate Change and Extinction Events in Earth History. Science, 240, 996-1002. doi: 10.1126/science.240.4855.996

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London.

De Rigo, D., Caudullo, G., San-Miguel-Ayanz, J., y Barredo, J. I. (2017). Robust modelling of the impacts of climate change on the habitat suitability of forest tree species. Publications Office of the European Union. doi: 10.2760/296501

Demangeot, J. (1989). Los medios naturales del globo. Barcelona: Masson.

Demeritt, D. (2001). The construction of global warming and the politics of science. Annals of the American Association of Geographers, 91, 307-337. doi: 10.1111/0004-5608.00245

Dering, M., Sekiewicz, K., Boratynska, K., Litkowiec, M., Iszkulo, G., Romo, A., y Boratynski, A. (2014). Genetic diversity and inter-specific relations of western Mediterranean relic Abies taxa as compared to the Iberian A. alba. Flora, 209, 367-374. doi: 10.1016/j.flora.2014.03.011

Efron, B. (1981). Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika, 68, 589-599.

Esteban-Parra, M. J., Rodrigo, F. S., y Castro-Diez, Y. (1998). Spatial and temporal patterns of precipitation in Spain for the period 1880-1992. International Journal of Climatology, 18, 1557-1574. doi: 10.1002/(SICI)1097-0088(19981130)18:14<1557::AID-JOC328>3.3.CO;2-A

Felicísimo, Á. M., Muñoz, J., Mateo, R. G., y Villalba, C. J. (2012). Vulnerabilidad de la flora y vegetación españolas ante el cambio climático. Ecosistemas, 21, 1-6.

Ferre Bueno, E. (1999). Las unidades naturales de la provincia de Málaga. En Elementos de los paisajes de la provincia de Málaga (pp. 13-22). Málaga: Servicio de Publicaciones y Divulgación Científica de la Universidad de Málaga.

Ferreras Chasco, C., y Fidalgo Hijano, C. (1991). Biogeografía y edafogeografía. Madrid: Síntesis.

Ferreras Fernández, C. (2005). Historia del clima mediterráneo. Consejería de Agricultura, Agua y Medio Ambiente. Murcia: Región de Murcia.

Fick, S., y Hijmans, R. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. doi: 10.1002/joc.5086

Fielding, A. H., y Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49.

Fischer, E. M., y Knutti, R. (2015). Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Climate Change, 5, 560-564. doi: 10.1038/nclimate2617

Fisher, H. J. (2002). Macroecology: new, or biogeography revisited? Nature, 417, 787. doi: 10.1038/417787c

Fordham, D. A., Bertelsmeier, C., Brook, B. W., Early, R., Ara, M. B., Neto, D., y Brown, S.C. (2017). How complex should models be ? Comparing correlative and mechanistic range dynamics models. Global Change Biology, 1-14. doi: 10.1111/gcb.13935

Franklin, J. (2009). Mapping Species Distributions: Spatial Inference and Prediction (Ecology, Biodiversity and Conservation). Nueva York: Cambridge University Press.

Franklin, J. (1995). Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 19, 474-499.

Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I., y Thuiller, W. (2010). Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions, 16, 331-342.

García, L. (2003). Controlling the false discovery rate in ecological research. Trends in Ecology & Evolution, 18, 553-554. doi: 10.1016/j.tree.2003.08.011

Giampoudakis, K., Marske, K. A., Borregaard, M. K., Ugan, A., Singarayer, J. S., Valdes, P. J., Rahbek, C., y Nogués-Bravo, D. (2016). Niche dynamics of Palaeolithic modern humans during the settlement of the Palaearctic. Global Ecology and Biogeography, 26, 1-12. doi: 10.1111/geb.12543

Gómez Moreno, M. (2012). La Serranía de Ronda: configuración física y articulación del poblamiento. Takurunna, 2, 121-150.

Gómez Zotano, J., Román Requena, F., Hidalgo Triana, N., y Pérez Latorre, A. V. (2014). Biodiversidad y valores de conservación de los ecosistemas serpentínicos en España. Boletín la Asociación de Geográfos Españoles, 65, 187-206.

González-Hidalgo, J. C., Brunetti, M., y de Luis, M. (2011). A new tool for monthly precipitation analysis in Spain: MOPREDAS database (monthly precipitation trends December 1945-November 2005). International Journal of Climatology, 31, 715-731. doi: 10.1002/joc.2115

Gonzalez-Hidalgo, J. C., Peña-Angulo, D., Brunetti, M., y Cortesi, N. (2015). MOTEDAS: A new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology, 35, 4444-4463. doi: 10.1002/joc.4298

Grabherr, G., Gottfried, M., y Paull, H. (1994). Climate effects on mountain plants. Nature, 369, 448. doi: 10.1038/369448a0

Graham, M. H. (2003). Confronting multicollinearity in ecological multiple regression. Ecology, 84, 2809-2815. doi: 10.1890/02-3114

Guerrrero, J., Cáceres, F., Giménes de Azcarate, F., y Moreira, J. (2013). The Spanish Fir Tree (Abies pinsapo): forseeable behaviour and management criteria faced with climate change. Comunicación presentada en Ecogenes Conference. Adapting to Global Change in the Mediterranean Hotspot. Sevilla, 18-20 de septiembre.

Guisan, A. y Edwards, T. C. (2002). Generalized linear and generalized additi v e models in studies of species distributions: setting the scene. Ecological Modelling, 157, 89-100.

Guisan, A., y Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009.

Guisan, A., Thuiller, W., y Zimmermann, N. E. (2017). Habitat Suitability and Distribution Models: With Applications in R (Ecology, Biodiversity and Conservation). Cambridge: Cambridge University Press. doi: 10.1017/9781139028271

Guisan, A., y Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186.

Gutiérrez-Hernández, O., Cámara-Artigas, R., y García, L. V. (2017). Nicho ecológico y distribución geográfica del pinsapo (Abies pinsapo. Boiss). Takurunna, 6-7, 59-88.

Hedenstrom, A., Barta, Z., Helm, B., Houston, A. I., Mcnamara, J. M., y Jonzen, N. (2007). Migration speed and scheduling of annual events by migrating birds in relation to climate change. Climate Research, 35, 79-91. doi: 10.3354/cr00715

Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907-913. doi: 10.1038/35016000

Hewitt, G. (1999). Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 68, 87-112. doi: 10.1111/j.1095-8312.1999.tb01160.x

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., y Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.

Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., y Hatziolos, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737-1742. doi: 10.1126/science.1152509

Hughes, A. C. (2017). Mapping priorities for conservation in Southeast Asia. Biological Conservation, 209, 395-405. doi: 10.1016/j.biocon.2017.03.007

Humboldt, A. von. (1805). Essai sur le Géographie des Plantes. París: Schoell, Lebrault & CO.

IPCC (2013). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Nueva York: Cambridge University Press.

James, G., Witten, D., Hastie, T., y Tibshirani, R. (2013). An Introduction to Statistical Learning, with Applications in R. Springer. doi: 10.1007/978-1-4614-7138-7

Kearney, M., y Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecological Letters, 12, 334-50. doi: 10.1111/j.1461-0248.2008.01277.x

Kent, M. (2005). Biogeography and macroecology. Progress in Physical Geography, 29, 256-264. doi: 10.1191/0309133305pp447pr

Kouba, Y., Camarero, J. J., y Alados, C. L. (2012). Roles of land-use and climate change on the establishment and regeneration dynamics of Mediterranean semi-deciduous oak forests. Forest Ecology Management, 274, 143-150. doi: 10.1016/j.foreco.2012.02.033

Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73. doi: 10.2307/1941447

Linares, J. C. (2011). Biogeography and evolution of Abies (Pinaceae) in the Mediterranean Basin: The roles of long-term climatic change and glacial refugia. Journal of Biogeography, 38, 619-630. doi: 10.1111/j.1365-2699.2010.02458.x

Linares, J. C., Camarero, J. J., y Carreira, J. A. (2010). Competition modulates the adaptation capacity of forests to climatic stress: Insights from recent growth decline and death in relict stands of the Mediterranean fir Abies pinsapo. Journal of Ecology, 98, 592-603. doi: 10.1111/j.1365-2745.2010.01645.x

Linares, J. C., Carreira, J. A., y Ochoa, V. (2011). Human impacts drive forest structure and diversity. Insights from Mediterranean mountain forest dominated by Abies pinsapo (Boiss.). European Journal of Forest Research, 130, 533-542. doi: 10.1007/s10342-010-0441-9

Linares, J. C., y Carreira, J. A. (2006). El pinsapo, abeto endémico andaluz. O, ¿Qué hace un tipo como tú en un sitio como éste? Ecosistemas, 15, 171-191.

Linares, J. C., Delgado-Huertas, A., Camarero, J. J., Merino, J., y Carreira, J.A. (2009). Competition and drought limit the response of water-use efficiency to rising atmospheric carbon dioxide in the Mediterranean fir Abies pinsapo. Oecologia, 161, 611-624. doi: 10.1007/s00442-009-1409-7

Lobo, J. M., Jiménez-Valverde, A., y Hortal, J. (2010). The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33, 103-114.

Lobo, J. M., Jiménez-Valverde, A., y Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145-151.

Lomolino, M. V., Riddle, B. A., y Whittaker, R. J. (2016). Biogeography. Oxford: Oxford University Press.

López-Tirado, J., y Hidalgo, P. J. (2014). A high resolution predictive model for relict trees in the Mediterranean-mountain forests (Pinus sylvestris L., P. nigra Arnold and Abies pinsapo Boiss.) from the south of Spain: A reliable management tool for reforestation. Forest Ecology and Management, 330, 105-114. doi: 10.1016/j.foreco.2014.07.009

Martínez Enamorado, V., López García, E., y Becerra Parra, M. (2013). Cómo llamaban los andalusíes al pinsapo. Takurunna, 3, 364-372.

Matías, L., y Jump, A. S. (2012). Interactions between growth, demography and biotic interactions in determining species range limits in a warming world: The case of Pinus sylvestris. Forest Ecology and Management, 282, 10-22. doi: 10.1016/j.foreco.2012.06.053

Mauritsen, T., y Pincus, R. (2017). Committed warming inferred from observation. Nature Climate Change, 7, 652-655. https.//doi. 10.1038/nclimate3357.

Meaza, G., Arozarena Concepción, M. E., Beltrán Yanes, E., Cadiñanos Aguirre, J. A., Ferreras Chasco, C., Lozano Valencia, P., Molina Holgado, P., Panareda Clopés, J. M., y Pintó Fusalba, J. (2000). Metodología y práctica de la biogeografía. Barcelona: Serbal.

Mendoza-Fernández, A. J., Pérez-García, F. J., Martínez-Hernández, F., Salmerón-Sánchez, E., Medina-Cazorla, J. M., Garrido-Becerra, J. A., Martínez-Nieto, M. I., Merlo, M. E., y Mota, J. F. (2015). Areas of endemism and threatened flora in a Mediterranean hotspot: Southern Spain. Journal for Nature Conservation, 23, 35-44. doi: 10.1016/j.jnc.2014.08.001

Milne, R. I., y Abbott, R. J. (2002). The origin and evolution of tertiary relict floras. Advances in Botanical Research, 38, 281-314. doi: 10.1016/S0065-2296(02)38033-9

Mod, H. K., Scherrer, D., Luoto, M., y Guisan, A. (2016). What we use is not what we know: Environmental predictors in plant distribution models. Journal of Vegetation Science, 27, 1308-1322. doi: 10.1111/jvs.12444

Morelli, F., y Tryjanowski, P. (2015). No species is an island: Testing the effects of biotic interactions on models of avian niche occupation. Ecology and Evolution, 5, 759-768. doi: 10.1002/ece3.1387

Naimi, B., y Araújo, M. B. (2016). sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39, 368-375. doi: 10.1111/ecog.01881

Naimi, B., Skidmore, A. K., Groen, T. A., y Hamm, N. A. S. (2011). Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modellin. Journal of Biogeography, 38, 1497-1509. doi: 10.1111/j.1365-2699.2011.02523.x

Nicholls, R. J., y Klein, R. J. T. (2005). Climate change and coastal management on Europe’s coast. En J. E. Vermaat, L. Bouwer, R. K. Turner y W. Salomons (Eds.), Managing European Coasts. Past, Present and Future (pp. 199-226). Berlín: Springer. doi: 10.1007/3-540-27150-3_11

Nogués-Bravo, D. (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18, 521-531. doi: 10.1111/j.1466-8238.2009.00476.x

Nogués Bravo, D. (2003). El estudio de la distribución espacial en la biodiversidad: concepto y métodos. Cuadernos de Investigación Geográfica, 29, 67-82.

Oreskes, N. (2010). Evaluation (Not Validation) Models Quantitative. Environmental Health, 106, 1453-1460.

Oreskes, N. (2005). The Scientific Consensus on Climate Change. Science, 306, 1686. doi: 10.1126/science.1103618

Pearson, R. G., y Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371. doi: 10.1046/j.1466-822X.2003.00042.x

Pearson, R. G., Raxworthy, C. J., Nakamura, M., y Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102-117. doi: 10.1111/j.1365-2699.2006.01594.x

Peña-Angulo, D., Brunetti, M., Cortesi, N., y Gonzalez-Hidalgo, J. C. (2016). A new climatology of maximum and minimum temperature (1951-2010) in the Spanish mainland: a comparison between three different interpolation methods. International Journal of Geographical Information Science, 30, 2109-2132. doi: 10.1080/13658816.2016.1155712

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., y Bastos Araujo, M. (2011). Ecological niches and geographic distributions. Princeton, NJ: Princeton University Press.

Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotiyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., y Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429-436. doi: 10.1038/20859

Phillips, S. J., y Dudi, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175.

Pitman, A. J. (2005). On the role of Geography in Earth System Science. Geoforum, 36, 137-148. doi: 10.1016/j.geoforum.2004.11.008

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. doi: 10.1007/978-3-540-74686-7

Ripple, W. J., Wolf, C., Galetti, M., Newsome, T. M., Alamgir, M., Crist, E., Mahmoud, M. I., y Laurance, W. F. (2017). World Scientists’ Warning to Humanity: A Second Notice. BioScience, 67, 1026-1028. doi: 10.1093/biosci/bix125/4605229

Rodríguez Martínez, F. (1977). La serranía de Ronda. Estudio geográfico. Madrid: Confederación Española de Cajas Ahorros.

Rubio Recio, J. M. (1989). Biogeografía. Paisajes vegetales y vida animal. Madrid: Síntesis.

Ruddiman, W. F. (2003). The anthropogenic greenhouse era began thousands of years ago. Climate change, 61, 261-293. doi: 10.1023/B:CLIM.0000004577.17928.fa

Ruiz Sinoga, J. D., Garcia Marin, R., Martinez Murillo, J. F., y Gabarron Galeote, M. A. (2011). Precipitation dynamics in southern Spain: Trends and cycles. International Journal of Climatology, 31, 2281-2289. doi: 10.1002/joc.2235

Screen, J. A., y Simmonds, I. (2010). The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334-1337. doi: 10.1038/nature09051

Serra-Diaz, J. M., Franklin, J., Ninyerola, M., Davis, F. W., Syphard, A. D., Regan, H. M., y Ikegami, M. (2014). Bioclimatic velocity: The pace of species exposure to climate change. Diversity and Distributions, 20, 169-180. doi: 10.1111/ddi.12131

Stirling, I., Lunn, N. J., y Iacozza, J. (1999). Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climatic change. Artic, 52, 294-306.

Suc, J. P. (1984). Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature, 307, 429-432. doi: 10.1038/307429a0

Tejedor, E., Saz, M. A., Cuadrat, J. M., Esper, J., y de Luis, M. (2016). Temperature variability of the Iberian Range since 1602 inferred from tree-ring records. Climate of the Past, 13, 93-105. doi: 10.5194/cp-2016-9

Tiffney, B. H., y Manchester, S. R. (2001). The Use of Geological and Paleontological Evidence in Evaluating Plant Phylogeographic Hypotheses in the Northern Hemisphere Tertiary. International Journal of Plant Sciences, 162, S3-S17. doi: 10.1086/323880

Tulloch, A. I. T., Sutcliffe, P., Naujokaitis-Lewis, I., Tingley, R., Brotons, L., Ferraz, K. M. P. M. B., Possingham, H., Guisan, A., y Rhodes, J. R. (2016). Conservation planners tend to ignore improved accuracy of modelled species distributions to focus on multiple threats and ecological processes. Biological Conservation, 199, 157-171. doi: 10.1016/j.biocon.2016.04.023

Valladares, F. (2009). 9520 Abetales de Abies pinsapo Boiss. En Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España (p. 90). Madrid: Ministerio de Medio Ambiente y Medio Rural y Marino.

Vitousek, P. M., Mooney, H. A., Lubchenco, J., y Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277, 494-499. doi: 10.1126/science.277.5325.494

Wallace R. A. (1876). The Geographical Distribution of Animals. Vol. 1. Harper Brother. 1, 574. doi: 10.1086/271871

Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C., Ga Uszka, A., Cearreta, A., Edgeworth, M., Ellis, E. C., Ellis, M., Jeandel, C., Leinfelder, R., Mcneill, J. R., Richter, D. D., Steffen, W., Syvitski, J., Vidas, D., Wagreich, M., Williams, M., Zhisheng, A., Grinevald, J., Odada, E., Oreskes, N., y Wolfe, A. P. (2016). The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351, 137-148. doi: 10.1126/science.aad2622

Zachos, J., Pagani, M., Sloan, L., Thomas, E., y Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686-693. doi: 10.1126/science.1059412

Zheng, B., y Agresti, A. (2000). Summarizing the predictive power of a generalized linear model. Statistics in Medicine, 19, 1771-1781. doi: 10.1002/1097-0258(20000715)19:13<1771::AID-SIM485>3.3.CO;2-G