Geographically Weighted Logistic Regression to identify explanatory factor of land use distribution in future scenarios of urban growth

Main Article Content

Ramón Molinero-Parejo
Francisco Aguilera-Benavente
Montserrat Gómez-Delgado

Abstract

Urban expansion is a spatio-temporal process that reflects the localization patterns of the population and its activities, which can cause irreversible impacts on the territory. The construction of narratives and the subsequent mapping of future scenarios has been revealed as a planning technique, which can help in the management and planning of land use and transport. The Corridor of Henares (Madrid) has been chosen as a case study, representing the spatial evolution of five urban land uses in three disruptive scenarios for 2050. The present research aims to determine which explanatory factors influenced the process of spatialization of the five uses that was projected in a previous mapping workshop. In this way, the aim is to provide more precise information about the driving factors of use changes in each scenario, which could later be applied to new spatial models of urban simulation.  Thus, given the ubiquitous nature of urbanization processes, Geographically Weighted Logistic Regression (GWLR) was used as it enables a spatial analysis of the relationships between the explanatory factors that global models do not allow to study. The outcomes showed coincidences between the most significant factors of the model and the scenario narratives.



Downloads

Download data is not yet available.

Article Details

How to Cite
Molinero-Parejo, R., Aguilera-Benavente, F. ., & Gómez-Delgado, M. (2021). Geographically Weighted Logistic Regression to identify explanatory factor of land use distribution in future scenarios of urban growth. Boletín De La Asociación Española De Geografía, (88). https://doi.org/10.21138/bage.3052

References

Akaike, H. (1973) Information Theory and an Extension of the Maximum Likelihood Principle. In B. N. Petrov & F. Csaki (Eds.), International Symposium on Information Theory (pp. 267-281). Akadémiai Kiadó.

Avin, U., & Goodspeed, R. (2020). Using Exploratory Scenarios in Planning Practice: A Spectrum of Approaches. Journal of the American Planning Association, 0(0), 1-14. https://doi.org/10.1080/01944363.2020.1746688

Barreira-González, P., Aguilera-Benavente, F., & Gómez-Delgado, M. (2017). Implementation and calibration of a new irregular cellular automata-based model for local urban growth simulation: The MUGICA model. Environment and Planning B: Urban Analytics and City Science, 46(2), 243–263. https://doi.org/10.1177/2399808317709280

Barreira-González, P., Gómez-Delgado, M., & Aguilera-Benavente, F. (2015). From raster to vector cellular automata models: A new approach to simulate urban growth with the help of graph theory. Computers, Environment and Urban Systems, 54, 119-131. https://doi.org/10.1016/j.compenvurbsys.2015.07.004

Bharath, H. A., Chandan, M. C., Vinay, S., & Ramachandra, T. V. (2018). Modelling urban dynamics in rapidly urbanising Indian cities. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 201-210. https://doi.org/10.1016/j.ejrs.2017.08.002

Börjeson, L., Höjer, M., Dreborg, K. H., Ekvall, T., & Finnveden, G. (2006). Scenario types and techniques: Towards a user’s guide. Futures, 38(7), 723-739. https://doi.org/10.1016/j.futures.2005.12.002

Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geographical Analysis, 28(4), 281-298.

Cantergiani, C., & Gómez Delgado, M. (2020). Simulación del crecimiento urbano con AMEBA: Modelo Basado en Agentes para la ocupación residencial. Boletín de la Asociación de Geógrafos Españoles, (86). https://doi.org/10.21138/bage.2910

Chen, J. (2007). Rapid urbanization in China: A real challenge to soil protection and food security. CATENA, 69(1), 1-15. https://doi.org/10.1016/j.catena.2006.04.019

Chotchaiwong, & Wijitkosum. (2019). Predicting Urban Expansion and Urban Land Use Changes in Nakhon Ratchasima City Using A CA-Markov Model under Two Different Scenarios. Land, 8(9), 140. https://doi.org/10.3390/land8090140

Clopper, C. J., & Pearson, E. S. (1934). The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial. Biometrika, 26(4), 404. https://doi.org/10.2307/2331986

CRTM (2015). Plan Estratégico de Movilidad Sostenible de la Comunidad de Madrid 2013-2025. In Consorcio Regional de Transportes de Madrid. Retrieved from https://www.crtm.es/media/397998/pemscam_triptico.pdf

Dadashpoor, H., Azizi, P., & Moghadasi, M. (2019). Analyzing spatial patterns, driving forces and predicting future growth scenarios for supporting sustainable urban growth: Evidence from Tabriz metropolitan area, Iran. Sustainable Cities and Society, 47, 1–15. https://doi.org/10.1016/j.scs.2019.101502

Deal, B., Pan, H., Timm, S., & Pallathucheril, V. (2017). The role of multidirectional temporal analysis in scenario planning exercises and Planning Support Systems. Computers, Environment and Urban Systems, 64, 91–102. https://doi.org/10.1016/j.compenvurbsys.2017.01.004

Díaz-Pacheco, J., & Hewitt, R. (2013). Modelado de cambios de usos de suelo urbano a través de redes neuronales artificiales. Comparación con dos aplicaciones de software. GeoFocus, 14, 1-22. Retrieved from http://www.geofocus.org/index.php/geofocus/article/view/298

Duque, J. C., Velásquez, H., & Agudelo, J. (2011). Infraestructura pública y precios de vivienda : una aplicación de regresión geográficamente ponderada en el contexto de precios hedónicos. Ecos de ECONOMÍA, (33), 95–122.

Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression. The analysis of spatially varying relationships. West Sussex: JOHN WILEY & SONS, LTD.

Gallardo Beltrán, M. (2014). Cambios de usos del suelo y simulación de escenarios en la Comunidad de Madrid. Universidad Complutense de Madrid.

Gao, J., & Li, S. (2011). Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using Geographically Weighted Regression. Applied Geography, 31(1), 292–302. https://doi.org/10.1016/j.apgeog.2010.06.003

García Rodríguez, M. P., & Pérez González, M. E. (2014). Análisis multitemporal del urbanismo expansivo en el corredor del Henares. Aportación de las imágenes de satélite. Estudios Geograficos, 75(277), 597-618. https://doi.org/10.3989/estgeogr.201419

Gollini, I., Lu, B., Charlton, M., Brunsdon, C., & Harris, P. (2015). GWmodel : an R package for exploring spatial heterogeneity. Journal of Statistical Software, 63(17), 1–50. https://doi.org/10.1080/10095020.2014.917453

Guanglong, D., Erqi, X., & Hongqi, Z. (2017). Urban Expansion and Spatiotemporal Relationships with Driving Factors Revealed by Geographically Weighted Logistic Regression. Journal of Resources and Ecology, 8(3), 277-286. https://doi.org/10.5814/j.issn.1674-764x.2017.03.008

Gutierrez-Puebla, J., García-Palomares, J. C., & Daniel-Cardozo, O. (2012). Regresión Geográficamente Ponderada (GWR) y estimación de la demanda de las estaciones del Metro de Madrid. In XV Congreso Nacional de Tecnologías de La Información Geográfica (pp. 1-13). Retrieved from http://www.age-geografia.es/tig/2012_Madrid/ponencia2/GutierrezPuebla_final_par.pdf

Hamdy, O., Zhao, S., Osman, T., Salheen, M., & Eid, Y. (2016). Applying a Hybrid Model of Markov Chain and Logistic Regression to Identify Future Urban Sprawl in Abouelreesh, Aswan: A Case Study. Geosciences, 6(4), 43. https://doi.org/10.3390/geosciences6040043

Hou, H., Wang, R., & Murayama, Y. (2019). Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: A case study of Hangzhou from 1990 to 2035. Science of The Total Environment, 661, 422–431. https://doi.org/10.1016/j.scitotenv.2019.01.208

Hu, Z., & Lo, C. P. (2007). Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31(6), 667–688. https://doi.org/10.1016/j.compenvurbsys.2006.11.001

Hurvich, C. M., & Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297–307. https://doi.org/10.1093/biomet/76.2.297

Jokar Arsanjani, J., Helbich, M., Kainz, W., & Darvishi Boloorani, A. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275. https://doi.org/10.1016/j.jag.2011.12.014

Li, C., Li, J., & Wu, J. (2018). What drives urban growth in China? A multi-scale comparative analysis. Applied Geography, 98(June), 43-51. https://doi.org/10.1016/j.apgeog.2018.07.002

Liao, J., Tang, L., Shao, G., Su, X., Chen, D., & Xu, T. (2016). Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations. Environmental Modelling and Software, 75, 163–175. https://doi.org/10.1016/j.envsoft.2015.10.014

Luo, J., & Wei, Y. H. D. (2009). Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landscape and Urban Planning, 91(2), 51–64. https://doi.org/10.1016/j.landurbplan.2008.11.010

Mas, J.-F., Soares Filho, B., Pontius, R., Farfán Gutiérrez, M., & Rodrigues, H. (2013). A Suite of Tools for ROC Analysis of Spatial Models. ISPRS International Journal of Geo-Information, 2(3), 869-887. https://doi.org/10.3390/ijgi2030869

Matthews, S. A., & Yang, T.-C. (2012). Mapping the results of local statistics. Demographic Research, 26, 151-166. https://doi.org/10.4054/demres.2012.26.6

Mirbagheri, B., & Alimohammadi, A. (2017). Improving urban cellular automata performance by integrating global and geographically weighted logistic regression models. Transactions in GIS, 21(6), 1280-1297. https://doi.org/10.1111/tgis.12278

Molinero-Parejo, R., Aguilera-Benavente, F. Gómez-Delgado, M., & Soria-Lara, J. A. (2021). Mapping disruptive long-term scenarios using a participatory approach. Journal of Maps (In press).

Mondal, B., Das, D. N., & Dolui, G. (2015). Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach. Modeling Earth Systems and Environment, 1(4), 29. https://doi.org/10.1007/s40808-015-0026-1

Nkeki, F. N., & Asikhia, M. O. (2019). Geographically weighted logistic regression approach to explore the spatial variability in travel behaviour and built environment interactions: Accounting simultaneously for demographic and socioeconomic characteristics. Applied Geography, 108, 47-63. https://doi.org/10.1016/j.apgeog.2019.05.008

Olazabal, E., & Bellet, C. (2019). De la ciudad compacta a la ciudad extensa. Procesos de urbanización recientes en áreas urbanas españolas articuladas por ciudades medias. Anales de Geografía de La Universidad Complutense, 39(1), 149-175. https://doi.org/http://dx.doi.org/10.5209/AGUC.64681

Pascual Rosa, V., Aguilera-Benavente, F., & Salado García, M. J. (2019). Clasificación y análisis de los procesos de cambio en la forma urbana de las áreas metropolitanas españolas: aplicación de métricas espaciales. Estudios Geográficos, 80(286), e006. https://doi.org/10.3989/estgeogr.201926.006

Perveen, S., Kamruzzaman, M., & Yigitcanlar, T. (2017). Developing policy scenarios for sustainable urban growth management: A Delphi approach. Sustainability (Switzerland), 9(10). https://doi.org/10.3390/su9101787

Pineda Jaimes, N. B., Bosque Sendra, J., Gómez Delgado, M., & Franco Plata, R. (2010). Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression. Applied Geography, 30(4), 576–591. https://doi.org/10.1016/j.apgeog.2010.05.004

Plata Rocha, W., Bosque Sendra, J., & Gómez Delgado, M. (2011). Análisis de factores explicativos del crecimiento urbano en la Comunidad de Madrid a través de métodos estadísticos y SIG. Geografía y Sistemas de Información Geográfica (GEOSIG), 3(I), 201–230.

Plata Rocha, W., Gómez-Delgado, M., & Bosque-Sendra, J. (2011). Simulating urban growth scenarios using GIS and multicriteria analysis techniques: A case study of the Madrid region, Spain. Environment and Planning B: Planning and Design, 38(6), 1012-1031. https://doi.org/10.1068/b37061

Radinsky, J., Milz, D., Zellner, M., Pudlock, K., Witek, C., Hoch, C., & Lyons, L. (2017). How planners and stakeholders learn with visualization tools: using learning sciences methods to examine planning processes. Journal of Environmental Planning and Management, 60(7), 1296-1323. https://doi.org/10.1080/09640568.2016.1221795

Rodrigues, M., de la Riva, J., & Fotheringham, S. (2014). Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Applied Geography, 48, 52-63. https://doi.org/10.1016/j.apgeog.2014.01.011

Shafizadeh-Moghadam, H. (2019). Improving spatial accuracy of urban growth simulation models using ensemble forecasting approaches. Computers, Environment and Urban Systems, 76, 91–100. https://doi.org/10.1016/j.compenvurbsys.2019.04.005

Shafizadeh-Moghadam, H., & Helbich, M. (2015). Spatiotemporal variability of urban growth factors: A global and local perspective on the megacity of Mumbai. International Journal of Applied Earth Observation and Geoinformation, 35, 187–198. https://doi.org/10.1016/j.jag.2014.08.013

Soria-Lara, J. A., Ariza-Álvarez, A., Aguilera-Benavente, F., Cascajo, R., Arce-Ruiz, R. M., López, C., & Gómez-Delgado, M. (2021). Participatory visioning for building disruptive future scenarios for transport and land use planning. Journal of Transport Geography, 90. https://doi.org/10.1016/j.jtrangeo.2020.102907

Ustaoglu, E., Williams, B., & Petrov, L. O. (2017). Scenario analysis of alternative land development patterns for the Leipzig-Halle region: Implications for transport-land-use sustainability. Urban Planning, 2(1), 108–129. https://doi.org/10.17645/up.v2i1.838

van der Heijden, K. (2000). Scenarios and Forecasting. Technological Forecasting and Social Change, 65(1), 31-36. https://doi.org/10.1016/S0040-1625(99)00121-3

Wheeler, D., & Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7(2), 161-187. https://doi.org/10.1007/s10109-005-0155-6

Zapata, M. A., & Kaza, N. (2015). Radical uncertainty: scenario planning for futures. Environment and Planning B: Planning and Design, 42(4), 754-770. https://doi.org/10.1068/b39059