The storm Filomena: characteristics and damage estimation in Madrid’s woodland through satellite imagery
Main Article Content
Abstract
The characteristics of the Filomena storm and its impact on the trees of Madrid are analysed using synoptic maps, centuries-old snowfall data and satellite images at different scales (Terra MODIS, Landsat 8 and Sentinel 2). This historical snowfall affected half the surface of the Iberian Peninsula in January 2021, and its consequences were aggravated by the persistence of the subsequent anticyclonic situation, which kept surface temperatures in Madrid between -13 ºC and -2.5 ºC. The impact on the woodland, measured with images of changes in the NDVI, affected 11% of the winter vegetation cover of Madrid, with very notable damages to Pinus pinea, P. halepensis and Quercus ilex, both in the urban roads and in the city’s many parks, gardens and forest spaces.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
AEMET (2021). Borrascas 2020-2021. https://www.aemet.es/es/conocermas/borrascas/2020-2021/estudios_e_impactos/filomena#enlaces_asociados
Almendros Coca, M.A. (1992). Climate features of Retiro park, Madrid. Aspectos climáticos del parque del Retiro (Madrid). Estudios Geográficos, 53(207), 217-239.
Alonso, R., Vivanco, M.G., González-Fernández, I., Bermejo, V., Palomino, I., Garrido, J.L., & Artíñano, B. (2011). Modelling the influence of peri-urban trees in the air quality of Madrid region (Spain). Environmental Pollution, 159(8-9), 2138-2147. https://doi.org/10.1016/j.envpol.2010.12.005
Aram, F., Solgi, E., García, E. H., Mosavi, A., & Várkonyi-Kóczy, A. R. (2019). The cooling effect of large-scale urban parks on surrounding area thermal comfort. Energies, 12(20) https://doi.org/10.3390/en12203904
Ayuntamiento de Madrid (2020). Inventario de las zonas verdes en la ciudad de Madrid. https://tinyurl.com/2rsv6h5j
Ayuntamiento de Madrid (2021a). Proyecto de Bosque metropolitano. https://tinyurl.com/56zzj3ta
Ayuntamiento de Madrid (2021b). Almeida presenta el Plan de Acción para la recuperación del arbolado tras Filomena y anuncia la plantación de 100.000 ejemplares. https://www.madrid.es/portales/munimadrid/es/
Bernatzky, A. (1982). The contribution of tress and green spaces to a town climate. Energy and Buildings, 5(1), 1-10. https://doi.org/10.1016/0378-7788(82)90022-6
Blancher, G. (1963). Urban green spaces. Revue d'Hygiène Et de Médecine Sociale, 11, 219-237
Bowler, D.E., Buyung-Ali, L., Knight, T.M. & Pullin, A.S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147-155. https://doi.org/10.1016/j.landurbplan.2010.05.006
Calzada P., & Iglesias-Díaz, M.I. (2016). El riesgo del arbolado urbano. Contexto, concepto y evaluación. Mundiprensa.
Cañada Torrecilla, R. (2017). Clasificación de tipos de tiempo y su influencia en las concentraciones de dióxido de nitrógeno, material particulado (pm10) y ozono en la ciudad de Madrid, España. Boletín de la Asociación de Geógrafos Españoles, (75), 447-470. https://doi.org/10.21138/bage.2508
Coates, U.A. (1955). Urban congestion and green belts. The Journal of the Royal Society for the Promotion of Health, 76(9), 542-548. https://doi.org/10.1177/146642405507600903
Comisión Europea, EU. (2014). Construir una Infraestructura Verde Para Europa. Estrategia Nacional de Infraestructura Verde y de la Conectividad y Restauración Ecológicas https://ec.europa.eu/environment/nature/ecosystems/docs/GI-Brochure-210x210-ES-web.pdf
Comunidad de Madrid (2019). Memoria del Mapa digital continuo de vegetación de la Comunidad de Madrid. https://www.comunidad.madrid/sites/default/files/aud/urbanismo/cma_urb_es_memoria_mapa_vegetacion.pdf.
Comunidad de Madrid (2020). Ecosistemas forestales. https://www.comunidad.madrid/servicios/urbanismo-medio-ambiente/ecosistemas-forestales
Copernicus Sentinel Hub (2021). Imágenes de satélite Sentinel 2. https://scihub.copernicus.eu/dhus/#/home
Du, H., Zhou, F., Cai, Y., Li, C., & Xu, Y. (2021). Research on public health and well-being associated to the vegetation configuration of urban green space, a case study of Shanghai, China. Urban Forestry and Urban Greening, 59(126990). https://doi.org/10.1016/j.ufug.2021.126990
Fernández García, F. (1986). El clima de la Meseta Meridional: los tipos de tiempo. UAM Ediciones.
Fernández García, F., Almendros Coca, M.Á., & López Gómez, A.L. (1996). La influencia del relieve en la isla de calor de Madrid: Las vaguadas del Manzanares y del Abroñigal. Estudios Geográficos, (224), 473-494. https://doi.org/10.3989/egeogr.1996.i224
Fernández García, F., Allende Álvarez, F., Rasilla Álvarez, D., Martilli, A., & Alcaide Muñón, J. (2016). Estudio de detalle del clima urbano de Madrid. Área de Gobierno de Medio Ambiente y Movilidad. Ayuntamiento de Madrid.
Gago, E. J., Roldan, J., Pacheco-Torres, R., & Ordóñez, J. (2013). The city and urban heat islands: A review of strategies to mitigate adverse effects. Renewable and Sustainable Energy Reviews, 25, 749-758. https://doi.org/10.1016/j.rser.2013.05.057
Gál, T., Mahó, S.I., Skarbit, N., & Unger, J. (2021). Numerical modelling for analysis of the effect of different urban green spaces on urban heat load patterns in the present and in the future. Computers, Environment and Urban Systems, 87. https://ma.x-mol.com/paperRedirect/1354164608240115712
García Alvarado, J.M., Pérez González, M.E., & García Rodríguez, M.P. (2020). Sellado de suelos, fragmentación y conectividad ecológica en la conurbación de Madrid (España). Boletín de la Asociación Española de Geografía, (85). https://doi.org/10.21138/bage.2884
Gómez Mendoza, J. (1995). Cultura ambiental tradicional y arbolados de Madrid. Anales de Geografía de la Universidad Complutense, 15, 361-373.
Gómez Mendoza, J. (2003). El gobierno de la naturaleza en la ciudad. Ornato y ambientalismo en el Madrid decimonónico. Real Academia de la Historia.
González Granados, J. (2011). Flora y vegetación gipsícola, halófila y nitrófila de Madrid. Foresta, 52, 46-57.
Hurtado Hernández, A., Hiernaux Candelas, L., Tome de la Vega, F., Huidobro Ruiz, A., & Muñoz Rodríguez, Á. (2018). Estudio de caracterización de daños compatibles con ‘la seca’ de la encina en el Monte del Pardo y propuesta de actuaciones. Phytoma España, 301, 50-61. https://www.inffe.es/pdf/INFFE_Danos_compatibles%20con_la_Seca_en_El%20Pardo_2018.pdf
Hussain, M., Chen, D., Cheng, A., Wei, H., & Stanley, D. (2013). Change detection from remotely sensed images: From pixel-based to object-based approaches. Journal of Photogrammetry and Remote Sensing, 80, 91-106. https://doi.org/10.1016/j.isprsjprs.2013.03.006
IGME (1971). Mapa Geológico de España, Escala 1:200.000. Departamento de Publicaciones del Instituto Geológico y Minero de España.
IGN (2021). Plan Nacional de Ortofotografía Aérea. https://pnoa.ign.es/
Jiménez-Muñoz, J.C., Sobrino, J.A., Skokovic, D., Mattar, C., & Cristobal, J. (2014). Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840-1843. https://doi.org/10.1109/LGRS.2014.2312032
Krüger, T., Hecht, R., Herbrich, J., Behnisch, M., & Oczipka, M. (2018). Investigating the suitability of Sentinel-2 data to derive the urban vegetation structure. Paper presented at the Proceedings of SPIE - the International Society for Optical Engineering, 10793. https://doi:10.1117/12.2325337
Kweon, B.S., Sullivan, W.C., & Wiley, A.R. (1998). Green common spaces and the social integration of inner-city older adults. Environment and Behavior, 30(6), 832-858. https://doi.org/10.1177%2F001391659803000605
La Razón (2021). Daños en las instalaciones municipales de Madrid de la borrasca Filomena. Diario La Razón. https://www.larazon.es/madrid/20210216/ndx4egufnvbslnsccacxoij34u.html
Nicholson, E. (1979). Nature in Cities: The natural environment in the design and development of urban green space. Edited by Ian C. Laurie. Cambridge University Press. https://doi.org/10.1017/S003060530002439X
Lemus-Canovas, M., Martin-Vide, J., Moreno-García, M.C., & López-Bustins, J.A. (2020). Estimating Barcelona's metropolitan daytime hot and cold poles using Landsat-8 land surface temperature. Science of the Total Environment, 699. https://doi.org/10.1016/j.scitotenv.2019.134307
Livesley, S.J., McPherson, E.G., & Calfapiedra, C. (2015). The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. Journal of Environmental Quality, 45, 119-124. https://doi.org/10.2134/jeq2015.11.0567
Maimaitiyiming, M., Ghulam, A., Tiyip, T., Pla, F., Latorre-Carmona, P., Halik, T., & Caetano, M. (2014). Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, 89, 59-66. https://doi.org/10.1016/j.isprsjprs.2013.12.010
Mizutani, N., Miyamoto, H., Hayakawa, S., Kato, M., & Kamigawara, K. (1991). Analysis of green area change in and around metropolis using LANDSAT and census data. Paper presented at the Digest - International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 2359-2362).
Morcillo San Juan, A., Borrajo Millán, J.M., Rastrollo Gonzalo, A., & Nowak, D.J. (2019). Valor del Bosque Urbano de Madrid. Ayuntamiento de Madrid. https://www.madrid.es/UnidadesDescentralizadas/ZonasVerdes/TodoSobre/ValorBosqueUrbanoMadrid/Valor%20Bosque%20Urbano%20de%20Madrid.pdf
NASA (2021). MODIS images. https://worldview.earthdata.nasa.gov/
Ng, E., Chen, L., Wang, Y., & Yuan, C. (2012). A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Building and Environment, 47(1), 256-271. https://doi.org/10.1016/j.buildenv.2011.07.014
Nowak, D.J., Crane, D.E., & Stevens, J.C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening, 4(3-4), 115-123. https://doi.org/10.1016/j.ufug.2006.01.007
Nowak, D.J., Hirabayashi, S., Bodine, A., & Hoehn, R. (2013). Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environmental Pollution, 178, 395-402. http://dx.doi.org/10.1016/j.envpol.2013.03.050
Rodríguez Romero, E.J., Sáez de Tejada Granados, C., & Santo-Tomas Muro, R. (2018). Lookouts as a tool for the valorisation of urban landscape. The case study of Madrid. Lecture Notes in Civil Engineering, 3, 843-851. https://doi.org/10.1007/978-3-319-57937-5_87
Susca, T., Gaffin, S.R., & Dell'Osso, G.R. (2011). Positive effects of vegetation: Urban heat island and green roofs. Environmental Pollution, 159(8-9), 2119-2126. https://doi.org/10.1016/j.envpol.2011.03.007
Terán, F., & Sánchez de Madariaga, I. (1999). Madrid Ciudad Región: Entre la Ciudad y el Territorio, en la segunda mitad del siglo XX. Dirección General de Urbanismo y Planificación Regional, Comunidad de Madrid. http://oa.upm.es/21383/
Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
Turner, T. (1992). Open space planning in London: From standards per 1000 to green strategy. Town Planning Review, 63(4), 365-386. https://doi.org/10.3828/tpr.63.4.l703v67051278442
Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., & James, P. (2007). Promoting ecosystem and human health in urban areas using green infrastructure: A literature review. Landscape and Urban Planning, 81(3), 167-178. https://doi.org/10.1016/j.landurbplan.2007.02.001
USGS (2021). Landsat 8 image, Level 2. https://earthexplorer.usgs.gov
Valor, E., & Caselles, V. (1996). Mapping land surface emissivity from NDVI: application to European, African, and South American areas. Remote Sensing of Environment, 57, 167-184. https://doi.org/10.1016/0034-4257(96)00039-9
Wetterzentrale (2021). Mapas de superficie y 500 hPa. https://www.wetterzentrale.de/
Wild, C. (1981). Managing the landscape of towns. In B. Clouston & K. Stansfield (Eds.), Trees in towns: maintenance and management (pp. 128-164). Nichols Pub. Co.