Air quality in Barcelona during the COVID-19 lockdown and the global effect on CO2 emissions
Main Article Content
Abstract
The COVID-19 pandemic is having an enormous negative impact on human health, with more than 4.44 million deaths worldwide; on the economy, with an unprecedented deep and abrupt crisis; and on society, with millions of people facing unemployment and dependent, in the best-case scenario, on public welfare or social aid systems. Home confinement, measures to limit non-essential economic activity and travel restrictions in many countries during the spring of 2020 led to rapid air quality improvements in cities. A detailed analysis of Barcelona’s daily immissions of seven pollutants (CO, SO2, NO, NO2, NOx, PM10 and O3) shows a clear decrease from mid-March to June, with the peak in April and the nitrogen oxides. For these pollutants the reduction of traffic density is very likely the main cause of their immissions decrease. On another note, the global reduction of CO2 emissions derived from the use of fossil fuels was estimated at approximately 8 % in 2020, which, despite constituting an unprecedented drop, will have little impact on concentrations of CO2 and other greenhouse gases in the atmosphere. The current situation must be seen as an opportunity to push, without delay, for a drastic change in the energy and economy models towards a socio-environmental paradigm based on sustainability, economic efficiency and solidarity between people.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
AEMET (n.d.). Monthly climatological summaries. http://www.aemet.es/en/serviciosclimaticos/vigilancia_clima/resumenes?w=1&k=cat
Baldasano, J.M. (2020). COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Science of The Total Environment, 741, 140353. https://doi.org/10.1016/j.scitotenv.2020.140353
Costello, A., Abbas, M., Allen, A., Ball, S., Bell, S., Bellamy, R., Friel, S., Groce, N., Johnson, A., Kett, M., Lee, M., Levy, C., Maslin, M., McCoy, D., McGuire, B., Montgomery, H., Napier, D., Pagel, C., Patel, J., de Oliveira, J.A., Redclift, N., Rees, H., Rogger, D., Scott, J., Stephenson, J., Twigg, J., Wolff, J., & Patterson, C. (2009). Managing the health effects of climate change. The Lancet, 373(9676), 1693-1733. https://doi.org/10.1016/s0140-6736(09)60935-1
Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J.P., Iglesias, A., Lange, M., Lionello, P., Llasat, M.C., Shlomit, P., et al. (2018). Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Climate Change, 8(11), 972-980. https://hal.archives-ouvertes.fr/hal-01911390/document
Dantas, G., Siciliano, B., Boscaro França, B., Da Silva, C.M., & Arbilla, G. (2020). The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Science of The Total Environment, 729, 139085. https://doi.org/10.1016/j.scitotenv.2020.139085
Forster, P.M., Forster, H.I., Evans, M.J., Gidden, M.J., Jones, C.D., Keller, C.A., Lamboll, R.D., Le Quéré, C., Rogelj, J., Rosen, D., Schleussner, C-F., Richardson, T.B., Smith, C.J., & Turnock, S.T. (2020). Current and future global climate impacts resulting from COVID-19. Nature Climate Change, 10, 913–919. https://doi.org/10.1038/s41558-020-0883-0
He, G., Pan, Y., & Tanaka, T. (2020). The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nature Sustainability, 3, 1005-10011. https://doi.org/10.1038/s41893-020-0581-y
IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar5/wg1/
IPCC (2018). Global Warming of 1.5 ºC. Special Report. Summary for Policymakers. World Meteorological Organization. https://www.ipcc.ch/sr15/
IPCC (2021, In Press). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B (Eds.)]. Cambridge University Press.
Lambert, J. (2020, August 7). Emissions dropped during the COVID-19 pandemic. The climate impact won’t last. Science News. https://www.sciencenews.org/article/covid-19-coronavirus-greenhouse-gas-emissions-climate-change
Le Quéré, C., Jackson, R.B., Jones, M.W., Smith, A.J.P., Abernethy, S., Andrew, R.M., De-Gol, A.J., Willis, D.R., Shan, Y., Canadell, J.G., Friedlingstein, P., Creutzig, F., & Peters, G.P. (2020). Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change, 10, 647–653. https://doi.org/10.1038/s41558-020-0797-x
Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S.J., Feng, S., Zheng, B., Cui, D., Dou, X., Zhu, B., Guo, R., Ke, P., Sun, T., Lu, C., He, P., Wang, Y., Yue, X., Wang, X., Lei, Y., Zhou, H., ... Schellnhuber, H.J. (2020). Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 11, 5172. https://doi.org/10.1038/s41467-020-18922-7
Mahato, S., Pal, S., & Ghosh, K.G. (2020). Short-term exposure to ambient air quality of the most polluted Indian cities due to lockdown amid SARS-CoV-2. Environmental Research, 188, 109835. https://doi.org/10.1016/j.envres.2020.109835
Martín Vide, J. (1993). La teoría de catástrofes y la geografía: Aplicaciones en climatología (The theory of catastrophes and geography: Applications in climatology). Revista de Geografía, 27, 21-32.
Martín Vide, J. (2012). Reflexionando sobre la Geografía [Reflecting on Geography]. In V. Gozálvez Pérez & J.A. Marco Molina (Eds.), Geografía: retos ambientales y territoriales [Geography: environmental and territorial challenges] (pp.11-14). XXII Congress of the Spanish Association of Geographers, University of Alicante. Spanish Association of Geographers.
Martín Vide, J. (2020). Cambio climático en España. Realidades [Climate change in Spain. Realities]. In J. Romero González & J. Olcina Cantos (Eds.), Cambio climático en el Mediterráneo. Procesos, riesgos y políticas [Climate change in the Mediterranean. Processes, risks and policies] (pp.75-86). Tirant lo Blanch.
Maslin, M. (2019, November 28). The five corrupt pillars of climate change denial. The Conversation. https://theconversation.com/the-five-corrupt-pillars-of-climate-change-denial-122893
METEOCAT (n.d.). Monthly bulletins. https://www.meteo.cat/wpweb/climatologia/el-clima-ara/butlleti-mensual/
Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G.B., & Worm, B. (2011). How Many Species Are There on Earth and in the Ocean? PLOS Biology, 9(8), e1001127. https://doi.org/10.1371/journal.pbio.1001127
Park, J.T. (2015). Climate Change and Capitalism. Consilience, 14, 189-206. https://www.jstor.org/stable/26188749
Kolbert, E. (2014). The Sixth Extinction: An Unnatural History. Henry Holt and Co.
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F.S., III, Lambin, E., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H.J., Nykvist, B., De Wit, C.A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., & Foley, J. (2009). Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society, 14(2), 32. http://www.ecologyandsociety.org/vol14/iss2/art32/
Rutz, C., Loretto, M., Bates, A.E., Davidson, S.C., Duarte, C.M., Jetz, W., Johnson, M., Kato, A., Kays, R., Mueller, T., Primack, R.B., Ropert-Coudert, Y., Tucker, M.A., Wikelski, M., & Cagnacci, F. (2020). COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nature Ecology & Evolution, 4, 1156–1159. https://doi.org/10.1038/s41559-020-1237-z
Smith, P. (2003). Chaos. A theoretical explanation. Cambridge University Press.
Tobías, A., Carnerero, C., Reche, C., Massagué, J., Via, M., Minguillón, M.C., Alastuey, A., & Querol, X. (2020). Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of the Total Environment, 726, 138540. https://doi.org/10.1016/j.scitotenv.2020.138540
Thom, R. (1977). Stabilité structurelle et morphogénèse: essai d’une théorie générale des modèles. InterÉditions.
Tollefson, J. (2021, January 15). COVID curbed carbon emissions in 2020 — but not by much. Nature News. https://www.nature.com/articles/d41586-021-00090-3
United Nations (2015). Paris Agreement. https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf
Walsh, B., Ciais, P., Janssens, I. A., Peñuelas, J., Riahi, K., Rydzak, F., van Vuuren, D.P., & Obersteiner, M. (2017). Pathways for balancing CO2 emissions and sinks. Nature communications, 8, 14856. https://doi.org/10.1038/ncomms14856
World Health Organization-WHO-OMS (2018, May 2). 9 out of 10 people worldwide breathe polluted air, but more countries are taking action. https://www.who.int/news/item/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action
World Health Organization (2021, August 24). Weekly epidemiological update on COVID-19-24 August 2021. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---24-august-2021