Theoretical framework and methods for the analysis of the adoption-diffusion of innovations in agriculture: a bibliometric review
Main Article Content
Abstract
The adoption and diffusion of innovations are essential for both the development of production processes and the improvement of agricultural environmental sustainability, at any stage of the value chain. In recent years, social scientists have studied the diffusion and adoption of agricultural innovations from different approaches, such as innovation diffusion theory, behavioral models, econometric models, social capital and social network analysis, among others. In this study we analyze the scientific literature through a bibliometric analysis based on co-citation networks, to explore the theoretical pillars and bibliographic coupling, with which we explore the current methodological research trends of the last 50 years. The conclusions drawn from this analysis are that in recent years agricultural researchers on adoption and diffusion have designed multivariate methods that combine diverse study approaches. This review contributes to a better understanding of theory and practice in the study of the adoption and diffusion of agricultural innovations.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abadi Ghadim, A.K., & Pannell, D.J. (1999). A conceptual framework of adoption of an agricultural innovation, 5150(October). https://doi.org/10.1016/S0169-5150(99)00023-7
Aboud, A., Sofranko, A.J., & Ndiaye, S. (1996). The effect of gender on adoption of conservation practices by heads of farm households in Kenya. Society and Natural Resources, 9(5), 447-463. https://doi.org/10.1080/08941929609380987
Adesina, A.A., & Baidu-Forson, J. (1995). Farmers' perceptions and adoption of new agricultural technology: evidence from analysis in Burkina Faso and Guinea, West Africa. Agricultural Economics, 13(1), 19. https://doi.org/10.1016/0169-5150(95)01142-8
Adesina, A.A., & Zinnah, M. (1993). Technology characteristics, farmers' perceptions and adoption decisions: A Tobit model application in Sierra Leone. Agricultural Economics, 9(4), 297-311. https://doi.org/10.1016/0169-5150(93)90019-9
Adolwa, I.S., Schwarze, S., Waswa, B., & Buerkert, A. (2019). Understanding system innovation adoption: A comparative analysis of integrated soil fertility management uptake in Tamale (Ghana) and Kakamega (Kenya). Renewable Agriculture and Food Systems, 34(4), 313-325. https://doi.org/10.1017/S1742170517000485
Adrian, A.M., Norwood, S.H., & Mask, P.L. (2005). Producers’ perceptions and attitudes toward precision agriculture technologies. Computers and Electronics in Agriculture, 48(3), 256-271. https://doi.org/10.1016/j.compag.2005.04.004
Affholder, F., Jourdain, D., Quang, D.D., Tuong, T.P., Morize, M., & Ricome, A. (2010). Constraints to farmers’ adoption of direct-seeding mulch-based cropping systems: A farm scale modeling approach applied to the mountainous slopes of Vietnam. Agricultural Systems, 103(1), 51-62. https://doi.org/10.1016/j.agsy.2009.09.001
Aguilar-Gallegos, N., Muñoz-Rodríguez, M., Santoyo-Cortés, H., Aguilar-Ávila, J., & Klerkx, L. (2015). Information networks that generate economic value: A study on clusters of adopters of new or improved technologies and practices among oil palm growers in Mexico. Agricultural Systems, 135, 122-132. https://doi.org/10.1016/j.agsy.2015.01.003
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs. Prentice-Hall.
Akimowicz, M., Del Corso, J.-P., Gallai, N., & Képhaliacos, C. (2021). Adopt to adapt? Farmers’ varietal innovation adoption in a context of climate change. The case of sunflower hybrids in France. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123654
Alary, V., Corbeels, M., Affholder, F., Alvarez, S., Soria, A., Valadares Xavier, J.H., & Scopel, E. (2016). Economic assessment of conservation agriculture options in mixed crop-livestock systems in Brazil using farm modelling. Agricultural Systems, 144, 33-45. https://doi.org/10.1016/j.agsy.2016.01.008
Alavalapati, J.R.R., Luckert, M.K., & Gill, D.S. (1995). Adoption of agroforestry practices: a case study from Andhra Pradesh, India. Agroforestry Systems, 32(1), 1-14. https://doi.org/10.1007/BF00713844
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
Aria, M., Misuraca, M., & Spano, M. (2020). Mapping the Evolution of Social Research and Data Science on 30 Years of Social Indicators Research. Social Indicators Research, 149(3), 803-831. https://doi.org/10.1007/s11205-020-02281-3
Austin, E., Willock, J., Deary, I. ., Gibson, G. ., Dent, J. ., Edwards-Jones, G., Morgan, O., Grieve, R., & Sutherland, A. (1998). Empirical models of farmer behaviour using psychological, social and economic variables. Part I: linear modelling. Agricultural Systems, 58(2), 203-224. https://doi.org/10.1016/S0308-521X(98)00066-3
Bandiera, O., & Rasul, I. (2006). Social Networks and Technology Adoption in Northern Mozambique*. The Economic Journal, 116(514), 869-902. https://doi.org/10.1111/j.1468-0297.2006.01115.x
Bass, F.M. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215-227.
Batz, F.-J., Janssen, W., & Peters, K.J. (2003). Predicting technology adoption to improve research priority - Setting. Agricultural Economics, 28(2), 151-164. https://doi.org/10.1016/S0169-5150(02)00119-6
Batz, F.-J., Peters, K.J., & Janssen, W. (1999). The influence of technology characteristics on the rate and speed of adoption. Agricultural Economics, 21(2), 121-130. https://doi.org/10.1016/S0169-5150(99)00026-2
Besley, T., & Case, A. (1993). Modeling Technology Adoption in Developing Countries. American Economic Review Papers and Proceedings, 83(2), 396-402.
Bhatta, G.D., Ojha, H.R., Aggarwal, P.K., Sulaiman, V.R., Sultana, P., Thapa, D., …& Ghimire, L. (2017). Agricultural innovation and adaptation to climate change: empirical evidence from diverse agro-ecologies in South Asia. Environment, Development and Sustainability, 19(2), 497-525. https://doi.org/10.1007/s10668-015-9743-x
Blazy, J.-M., Tixier, P., Thomas, A., Ozier-Lafontaine, H., Salmon, F., & Wery, J. (2010). BANAD: A farm model for ex ante assessment of agro-ecological innovations and its application to banana farms in Guadeloupe. Agricultural Systems, 103(4), 221-232. https://doi.org/10.1016/j.agsy.2010.01.004
Blondel, V.D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008
Boahene, K., Snijders, T.A.B., & Folmer, H. (1999). An integrated socioeconomic analysis of innovation adoption: The case of hybrid cocoa in Ghana. Journal of Policy Modeling, 21(2), 167-184. https://doi.org/10.1016/s0161-8938(97)00070-7
Bowman, B. A., Denny, M.D., & Stone, A.E. (2020). Exploring producer innovation adoption using an extension-led trialing program. Journal of Extension, 58(1), 1-7. https://doi.org/10.2111/1551-5028(2004)057[0330:AORMIB]2.0.CO;2
Boyack, K.W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology, 61(12), 2389-2404. https://doi.org/10.1002/asi.21419
Branca, G., & Perelli, C. (2020). ‘Clearing the air’: common drivers of climate-smart smallholder food production in Eastern and Southern Africa. Journal of Cleaner Production, 270. https://doi.org/10.1016/j.jclepro.2020.121900
Brown, C., Alexander, P., & Rounsevell, M. (2018). Empirical evidence for the diffusion of knowledge in land use change. Journal of Land Use Science, 13(3), 269-283. https://doi.org/10.1080/1747423X.2018.1515995
Brown, D. (2000). A review of bio-economic models (Report). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=02b7a49c0fe95f45910d55d6bb0daa7a4a8f45ad
Brown, J.J., & Reingen, P.H. (1987). Social Ties and Word-of-Mouth Referral Behavior. Journal of Consumer Research, 14(3), 350-362. http://www.jstor.org/stable/2489496
Brugere, C., Padmakumar, K.P., Leschen, W., & Tocher, D.R. (2020). What influences the intention to adopt aquaculture innovations? Concepts and empirical assessment of fish farmers’ perceptions and beliefs about aquafeed containing non-conventional ingredients. Aquaculture Economics and Management, 25(3), 339-366. https://doi.org/10.1080/13657305.2020.1840661
Burton, M., Rigby, D., & Young, T. (2003). Modelling the adoption of organic horticultural technology in the UK using Duration Analysis. Australian Journal of Agricultural and Resource Economics, 47(1), 29-54. https://doi.org/10.1111/1467-8489.00202
Cadger, K., Quaicoo, A.K., Dawoe, E., & Isaac, M. E. (2016). Development interventions and agriculture adaptation: A social network analysis of farmer knowledge transfer in Ghana. Agriculture (Switzerland), 6(3). https://doi.org/10.3390/agriculture6030032
Caffaro, F., & Cavallo, E. (2019). The effects of individual variables, farming system characteristics and perceived barriers on actual use of smart farming technologies: Evidence from the piedmont region, northwestern Italy. Agriculture (Switzerland), 9(5). https://doi.org/10.3390/agriculture9050111
Caffaro, F., & Cavallo, E. (2020). Perceived Barriers to the Adoption of Smart Farming Technologies in Piedmont Region, Northwestern Italy: The Role of User and Farm Variables. Lecture Notes in Civil Engineering, 67, 681-689. https://doi.org/10.1007/978-3-030-39299-4_74
Campos, H. (2021). The innovation revolution in agriculture: a roadmap to value creation. Springer Nature.
Chanyapate, C. (2018). Agricultural development and peasant education. In Adult Education: International Perspectives From China (vol. 5, pp. 156-173). Taylor and Francis. https://doi.org/10.4324/9780429438165-6
Charatsari, C., & Lioutas, E.D. (2013). Of Mice and Men: When Face-to-Face Agricultural Information is Replaced by a Mouse Click. Journal of Agricultural and Food Information, 14(2), 103-131. https://doi.org/10.1080/10496505.2013.774276
Chatalova, L., Djanibekov, N., Gagalyuk, T., & Valentinov, V. (2017). The paradox of water management projects in central Asia: An institutionalist perspective. Water (Switzerland), 9(4). https://doi.org/10.3390/w9040300
Chen, Z., & Song, S. (2008). Efficiency and technology gap in China’s agriculture: A regional meta-frontier analysis. China Economic Review, 19(2), 287-296. https://doi.org/10.1016/j.chieco.2007.03.001
Concu, G. B., Atzeni, G., Meleddu, M., & Vannini, M. (2020). Policy design for climate change mitigation and adaptation in sheep farming: Insights from a study of the knowledge transfer chain. Environmental Science and Policy, 107, 99-113. https://doi.org/10.1016/j.envsci.2020.02.014
Conley, T.G., & Udry, C.R. (2010). Learning about a New Technology: Pineapple in Ghana. American Economic Review, 100(1), 35-69. https://doi.org/10.1257/aer.100.1.35
Cuevas-Reyes, V. (2019). Decisive factors for the adoption of silage in livestock production units in the dry tropics of northwestern Mexico. Ciencia Tecnologia Agropecuaria, 20(3), 467-477. https://doi.org/10.21930/rcta.vol20_num3_art1586
D’Emden, F.H., Llewellyn, R.S., & Burton, M.P. (2006). Adoption of conservation tillage in Australian cropping regions: An application of duration analysis. Technological Forecasting and Social Change, 73(6), 630-647. https://doi.org/10.1016/j.techfore.2005.07.003
Daouda, O., & Bryant, C.R. (2016). Analysis of power relations among actors and institutions in the process of agricultural adaptation to climate change and variability from the diffusion of innovations perspective. Agricultural Adaptation to Climate Change. Springer International Publishing. https://doi.org/10.1007/978-3-319-31392-4_3
Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319-339. https://doi.org/10.2307/249008
Davis, F.D., Bagozzi, R.P., & Warshaw, P.R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1003. http://www.jstor.org/stable/2632151
DiMaggio, P.J., & Powell, W.W. (1983). The Iron Cage Revisited: Institutional Isomorphism and Collective Rationality in Organizational Fields. American Sociological Review, 48(2), 147-160. https://doi.org/10.2307/2095101
Dimara, E., & Skuras, D. (2003). Adoption of agricultural innovations as a two-stage partial observability process. Agricultural Economics, 28(3), 187-196. https://doi.org/10.1016/S0169-5150(03)00003-3
Doss, C.R. (2006). Analyzing technology adoption using microstudies: limitations, challenges, and opportunities for improvement. Agricultural Economics, 34(3), 207-219. https://doi.org/10.1111/j.1574-0864.2006.00119.x
Edwards-Jones, G. (2006). Modelling farmer decision-making: Concepts, progress and challenges. Animal Science, 82(6), 783-790. https://doi.org/10.1017/ASC2006112
Elsey, B., & Sirichoti, K. (2003). The theory and practice of workplace learning in the adoption of integrated pest management by tropical fruit growers in Thailand. Journal of Workplace Learning, 15(2), 53-62. https://doi.org/10.1108/13665620310464094
FAO (1989). Sustainable Development and Natural Resources Management (Twenty-Fifth Conference, Paper C 89/2 - Supplement). https://www.fao.org/3/z4920en/z4920en.pdf
Fatch, P., Masangano, C., Kamoto, J.F.M., Jordan, I., Hilger, T., Mambo, I., Nuppenau, E.-A. (2020). Are farmer perceptions among significant determinants of adoption of agricultural diversity in malawi? A case of Lilongwe district. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 121(2), 277-288. https://doi.org/10.17170/kobra-202011262276
Feder, G., Just, R. E., & Zilberman, D. (1985). Adoption of Agricultural Innovations in Developing Countries: A Survey. Economic Development and Cultural Change, 33(2), 255-298. http://www.jstor.org/stable/1153228
Feder, G., Murgai, R., & Quizon, J.B. (2004). The acquisition and diffusion of knowledge: The case of pest management training in Farmer Field Schools, Indonesia. Journal of Agricultural Economics, 55(2), 221-243. https://doi.org/10.1111/j.1477-9552.2004.tb00094.x
Feder, G., & O’Mara, G. (1982). On Information and Innovation Diffusion: A Bayesian Approach. American Journal of Agricultural Economics, 64(1), 145-147. https://doi.org/10.2307/1241186
Feder, G., & Umali, D. (1993). The adoption of agricultural innovations: a review. Technological Forecasting and Social Change, 43(3-4), 215-239. https://doi.org/10.1016/0040-1625(93)90053-A
Fischer, A., Arnold, A., & Gibbs, M. (1996). Information and the speed of innovation adoption. American Journal of Agricultural Economics, 78(4), 1073-1081. https://doi.org/10.2307/1243863
Fischer, E., & Qaim, M. (2012). Linking Smallholders to Markets: Determinants and Impacts of Farmer Collective Action in Kenya. World Development, 40(6), 1255-1268. https://doi.org/10.1016/j.worlddev.2011.11.018
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behaviour: An introduction to theory and research (vol. 27). Addison‐Wesley.
Foster, A.D., & Rosenzweig, M. R. (1995). Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture. Journal of Political Economy, 103(6), 1176-1209. https://doi.org/10.1086/601447
Fu, Z., Yue, J., Li, D., Zhang, X., Zhang, L., & Gao, Y. (2007). Evaluation of learner adoption intention of e-learning in China: A methodology based on perceived innovative attributes. New Zealand Journal of Agricultural Research, 50(5), 609–615. https://doi.org/10.1080/00288230709510329
Gailhard, İ. U., Bavorová, M., & Pirscher, F. (2015). Adoption of agri-environmental measures by organic farmers: The role of interpersonal communication. Journal of Agricultural Education and Extension, 21(2), 127-148. https://doi.org/10.1080/1389224X.2014.913985
García Hernández, A. (2013). Las redes de colaboración científica y su efecto en la productividad. Un análisis bibliométrico. Investigación Bibliotecológica: Archivonomía, Bibliotecología e Información, 27(59), 159-175. https://doi.org/10.1016/S0187-358X(13)72535-8
Gava, O., Favilli, E., Bartolini, F., & Brunori, G. (2017). Knowledge networks and their role in shaping the relations within the Agricultural Knowledge and Innovation System in the agroenergy sector. The case of biogas in Tuscany (Italy). Journal of Rural Studies, 56, 100-113. https://doi.org/10.1016/j.jrurstud.2017.09.009
Geels, F.W. (2002). Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Research Policy, 31(8), 1257-1274. https://doi.org/10.1016/S0048-7333(02)00062-8
Gil, J., Siebold, M., & Berger, T. (2015). Adoption and development of integrated crop-livestock-forestry systems in Mato Grosso, Brazil. Agriculture, Ecosystems and Environment, 199, 394-406. https://doi.org/10.1016/j.agee.2014.10.008
Goddard, E., Boaitey, A., Hailu, G., & Poon, K. (2016). Improving sustainability of beef industry supply chains. British Food Journal, 118(6), 1533-1552. https://doi.org/10.1108/BFJ-10-2015-0411
Goldberger, J.R. (2008). Diffusion and adoption of non-certified organic agriculture: A case study from semi-arid makueni district, Kenya. Journal of Sustainable Agriculture, 32(4), 531-564. https://doi.org/10.1080/10440040802257371
Granovetter, M. S. (1973). The Strength of Weak Ties. American Journal of Sociology, 78(6), 1360-1380. https://doi.org/doi/10.1086/225469
Griliches, Z. (1957). Hybrid Corn: An Exploration in the Economics of Technological Change. Econometrica, 25(4), 501-522. https://doi.org/10.2307/1905380
Gruber, M. (2020). An evolutionary perspective on adoption-diffusion theory. Journal of Business Research, 116, 535-541. https://doi.org/10.1016/j.jbusres.2020.02.024
Gureyev, V.N., & Mazov, N.A. (2022). Bibliometrics as a promising tool for solving publication ethics issues. Heliyon, 8(3). https://doi.org/10.1016/j.heliyon.2022.e09123
Hägerstrand, T. (1965). A Monte Carlo approach to diffusion. European Journal of Sociology/Archives Européennes de Sociologie, 6(1), 43-67.
Hägerstrand, T. (1967). Innovation diffusion as a spatial process. University of Chicago Press.
Haji, L., Valizadeh, N., Rezaei-Moghaddam, K., & Hayati, D. (2020). Analyzing iranian farmers’ behavioral intention towards acceptance of drip irrigation using extended technology acceptance model. Journal of Agricultural Science and Technology, 22(5), 1177-1190. http://jast.modares.ac.ir/article-23-32523-en.html
Hannus, V., & Sauer, J. (2021). Understanding farmers’ intention to use a sustainability standard: The role of economic rewards, knowledge, and ease of use. Sustainability (Switzerland), 13(19). https://doi.org/10.3390/su131910788
Hansen, D. L., Shneiderman, B., Smith, M.A., & Himelboim, I. (2019). Installation, orientation, and layout. In Analyzing Social Media Networks with NodeXL: Insights from a Connected World (pp. 55-66). Elsevier. https://doi.org/10.1016/B978-0-12-817756-3.00004-2
Hansen, M.T. (1999). The Search-Transfer Problem: The Role of Weak Ties in Sharing Knowledge across Organization Subunits. Administrative Science Quarterly, 44(1), 82-111. https://doi.org/10.2307/2667032
Harun, D.R., Priyanto, S.H., & Suharti, L. (2021). Farmer cards: Model, database, accuracy, and improvement in goverment quality service. Asian Journal of Agriculture and Rural Development, 11(3), 236-244. https://doi.org/10.18488/JOURNAL.AJARD.2021.113.236.244
Hasler, K., Olfs, H.-W., Omta, O., & Bröring, S. (2016). Drivers for the adoption of eco-innovations in the German fertilizer supply chain. Sustainability (Switzerland), 8(8).https://doi.org/10.3390/su8080682
Hassanein, N., & Kloppenburg J.R., J. (1995). Where the Grass Grows Again: Knowledge Exchange in the Sustainable Agriculture Movement. Rural Sociology, 60(4), 721-740. https://doi.org/10.1111/j.1549-0831.1995.tb00603.x
Heffernan, C., Thomson, K., & Nielsen, L. (2008). Livestock vaccine adoption among poor farmers in Bolivia: Remembering innovation diffusion theory. Vaccine, 26(19), 2433-2442. https://doi.org/10.1016/j.vaccine.2008.02.045
Hekkert, M.P., Suurs, R.A.A., Negro, S.O., Kuhlmann, S., & Smits, R.E.H.M. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change, 74(4), 413-432. https://doi.org/10.1016/j.techfore.2006.03.002
Hosmer Jr, D.W., Lemeshow, S., & Sturdivant, R.X. (2013). Applied logistic regression (vol. 398). John Wiley & Sons.
Isham, J. (2002). The Effect of Social Capital on Fertiliser Adoption: Evidence from Rural Tanzania. Journal of African Economies, 11(1), 39-60. https://doi.org/10.1093/jae/11.1.39
Jamison, D. T., & Lau, L. J. (1982). Farmer education and farm efficiency. Johns Hopkins University Press.
Jarden, R. J., Narayanan, A., Sandham, M., Siegert, R. J., & Koziol-Mclain, J. (2019). Bibliometric mapping of intensive care nurses’ wellbeing: Development and application of the new iAnalysis model. BMC Nursing, 18(1), 1-11. https://doi.org/10.1186/s12912-019-0343-1
Johansen, H.E. (1971). Diffusion of Strip Cropping in Southwestern Wisconsin. Annals of the Association of American Geographers, 61(4), 671-683. https://doi.org/10.1111/j.1467-8306.1971.tb00817.x
Joseph, A.E., & Keddie, P.D. (1981). The diffusion of grain corn production through southern Ontario, 1946–1971. Canadian Geographer / Le Géographe Canadien, 25(4), 333-349. https://doi.org/10.1111/j.1541-0064.1981.tb01337.x
Kabunga, N.S., Dubois, T., & Qaim, M. (2012). Heterogeneous information exposure and technology adoption: The case of tissue culture bananas in Kenya. Agricultural Economics (United Kingdom), 43(5), 473-486. https://doi.org/10.1111/j.1574-0862.2012.00597.x
Kapoor, K.K., Dwivedi, Y.K., & Williams, M.D. (2014a). Innovation adoption attributes: A review and synthesis of research findings. European Journal of Innovation Management, 17(3), 327-348. https://doi.org/10.1108/EJIM-08-2012-0083
Kapoor, K.K., Dwivedi, Y.K., & Williams, M.D. (2014b). Rogers’ Innovation Adoption Attributes: A Systematic Review and Synthesis of Existing Research. Information Systems Management, 31(1), 74-91. https://doi.org/10.1080/10580530.2014.854103
Kaufmann, P., Stagl, S., & Franks, D.W. (2009). Simulating the diffusion of organic farming practices in two New EU Member States. Ecological Economics, 68(10), 2580-2593. https://doi.org/10.1016/j.ecolecon.2009.04.001
Kaufmann, P., Zemeckis, R., Skulskis, V., Kairyte, E., & Stagl, S. (2011). The diffusion of organic farming in Lithuania. Journal of Sustainable Agriculture, 35(5), 522-549. https://doi.org/10.1080/10440046.2011.579838
Kebebe, E. (2019). Bridging technology adoption gaps in livestock sector in Ethiopia: A innovation system perspective. Technology in Society, 57, 30-37. https://doi.org/10.1016/j.techsoc.2018.12.002
Kebebe, E., Duncan, A.J., Klerkx, L., de Boer, I.J.M., & Oosting, S.J. (2015). Understanding socio-economic and policy constraints to dairy development in Ethiopia: A coupled functional-structural innovation systems analysis. Agricultural Systems, 141, 69-78. https://doi.org/10.1016/j.agsy.2015.09.007
Kee, K.F. (2017). Adoption and diffusion. The International Encyclopedia of Organizational Communication, 1, 41-54. https://doi.org/10.1002/9781118955567.wbieoc058
Kleminski, R., Kazienko, P., & Kajdanowicz, T. (2020). Analysis of direct citation, co-citation and bibliographic coupling in scientific topic identification. Journal of Information Science, 48(3), 349-373. https://doi.org/10.1177/0165551520962775
Klerkx, L., Aarts, N., & Leeuwis, C. (2010). Adaptive management in agricultural innovation systems: The interactions between innovation networks and their environment. Agricultural Systems, 103(6), 390-400. https://doi.org/10.1016/j.agsy.2010.03.012
Klerkx, L., Petter Stræte, E., Kvam, G. T., Ystad, E., & Butli Hårstad, R. M. (2017). Achieving best-fit configurations through advisory subsystems in AKIS: case studies of advisory service provisioning for diverse types of farmers in Norway. Journal of Agricultural Education and Extension, 23(3), 213-229. https://doi.org/10.1080/1389224X.2017.1320640
Klerkx, L., van Mierlo, B., & Leeuwis, C. (2012). Evolution of systems approaches to agricultural innovation: concepts, analysis and interventions. In I. Darnhofer, D. Gibbon & B. Dedieu (Eds.), Farming Systems Research into the 21st Century: The New Dynamic (pp. 457-483). Springer Netherlands. https://doi.org/10.1007/978-94-007-4503-2_20
Kline, R.B. (2015). Principles and practice of structural equation modeling. Guilford publications.
Knickel, K., Brunori, G., Rand, S., & Proost, J. (2009). Towards a Better Conceptual Framework for Innovation Processes in Agriculture and Rural Development: From Linear Models to Systemic Approaches. The Journal of Agricultural Education and Extension, 15(2), 131-146. https://doi.org/10.1080/13892240902909064
Knierim, A., Boenning, K., Caggiano, M., Cristóvão, A., Dirimanova, V., Koehnen, T., & Prager, K. (2015). The AKIS concept and its relevance in selected EU member states. Outlook on Agriculture, 44(1), 29-36. https://doi.org/10.5367/oa.2015.0194
Knierim, A., Kernecker, M., Erdle, K., Kraus, T., Borges, F., & Wurbs, A. (2019). Smart farming technology innovations – Insights and reflections from the German Smart-AKIS hub. NJAS - Wageningen Journal of Life Sciences, 90-91(1), 1-10. https://doi.org/10.1016/j.njas.2019.100314
Koundouri, P., Nauges, C., & Tzouvelekas, V. (2006). Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology. American Journal of Agricultural Economics, 88(3), 657-670. https://doi.org/10.1111/j.1467-8276.2006.00886.x
Koutsou, S., & Partalidou, M. (2012). Pursuing Knowledge and Innovation through Collective Actions. The Case of Young Farmers in Greece. Journal of Agricultural Education and Extension, 18(5), 445-460. https://doi.org/10.1080/1389224X.2012.704857
Krueger, N.F., & Carsrud, A.L. (1993). Entrepreneurial intentions: Applying the theory of planned behaviour. Entrepreneurship & Regional Development, 5(4), 315-330. https://doi.org/10.1080/08985629300000020
Lamprinopoulou, C., Renwick, A., Klerkx, L., Hermans, F., & Roep, D. (2014). Application of an integrated systemic framework for analysing agricultural innovation systems and informing innovation policies: Comparing the Dutch and Scottish agrifood sectors. Agricultural Systems, 129, 40-54. https://doi.org/10.1016/j.agsy.2014.05.001
Lancichinetti, A., & Fortunato, S. (2009). Community detection algorithms: A comparative analysis. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 80(5), 1-11. https://doi.org/10.1103/PhysRevE.80.056117
Lawrence, P. (1988). The Political Economy of The ‘Green Revolution’ in Africa. Review of African Political Economy, 15(42), 59-75. https://doi.org/10.1080/03056248808703776
Lee, D.R. (2005). Agricultural Sustainability and Technology Adoption: Issues and Policies for Developing Countries. American Journal of Agricultural Economics, 87(5), 1325-1334. https://doi.org/10.1111/j.1467-8276.2005.00826.x
Li, Y., & Sui, M. (2011). Literature Analysis of Innovation Diffusion. Technology and Investment, 02(03), 155-162. https://doi.org/10.4236/ti.2011.23016
Linnenluecke, M.K., Marrone, M., & Singh, A.K. (2019). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175-194. https://doi.org/10.1177/0312896219877678
Lioutas, E.D., & Charatsari, C. (2018). Green Innovativeness in Farm Enterprises: What Makes Farmers Think Green? Sustainable Development, 26(4), 337-349. https://doi.org/10.1002/sd.1709
Long, J.S., & Freese, J. (2006). Regression models for categorical dependent variables using Stata (vol. 7). Stata press.
Long, T.B., Blok, V., & Coninx, I. (2016). Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy. Journal of Cleaner Production, 112, 9-21. https://doi.org/10.1016/j.jclepro.2015.06.044
MacVaugh, J., & Schiavone, F. (2010). Limits to the diffusion of innovation: A literature review and integrative model. European Journal of Innovation Management, 13(2), 197-221. https://doi.org/10.1108/14601061011040258
Mafimisebi, T.E., Onyeka, U.P., Ayinde, I.A., & Ashaolu, O.F. (2006). Analysis of farmer-specific socio-economic determinants of adoption of modern livestock management technologies by farmers in Southwest Nigeria. Journal of Food, Agriculture and Environment, 4(1), 183-186. https://www.scopus.com/inward/record.uri?eid=2-s2.0-32044460393&partnerID=40&md5=5104d7170157373b29e1ad76f17fd7b4
Mahajan, V., Muller, E., & Bass, F.M. (1990). New Product Diffusion Models in Marketing: A Review and Directions for Research. Journal of Marketing, 54(1), 1-26. https://doi.org/10.2307/1252170
Makate, C., Makate, M., Mango, N., & Siziba, S. (2019). Increasing resilience of smallholder farmers to climate change through multiple adoption of proven climate-smart agriculture innovations. Lessons from Southern Africa. Journal of Environmental Management, 231, 858-868. https://doi.org/10.1016/j.jenvman.2018.10.069
Mandari, H.E., & Chong, Y.-L. (2018). Gender and age differences in rural farmers’ intention to use m-government services. Electronic Government, 14(3), 217-239. https://doi.org/10.1504/EG.2018.093406
Mankad, A., Loechel, B., & Measham, P.F. (2017). Psychosocial barriers and facilitators for area-wide management of fruit fly in southeastern Australia. Agronomy for Sustainable Development, 37(6). https://doi.org/10.1007/s13593-017-0477-z
Mansfield, E. (1961). Technical Change and the Rate of Imitation. Econometrica, 29(4), 741-766. https://doi.org/10.2307/1911817
Marangunić, N., & Granić, A. (2015). Technology acceptance model: a literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81-95. https://doi.org/10.1007/s10209-014-0348-1
Marra, M., Pannell, D., & Abadi Ghadim, A. (2003). The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: where are we on the learning curve? Agricultural Systems, 75(2-3), 215-234. https://doi.org/10.1016/S0308-521X(02)00066-5
Mejia, C., Wu, M., Zhang, Y., & Kajikawa, Y. (2021). Exploring Topics in Bibliometric Research Through Citation Networks and Semantic Analysis. Frontiers in Research Metrics and Analytics, 6. https://doi.org/10.3389/frma.2021.742311
Mesa, R., & Esparcia, J. (2021). Difusión de innovaciones en la agricultura ecológica y análisis de redes sociales: un ensayo de aplicación. Anales de Geografía de La Universidad Complutense, 41(1), 133-159. https://doi.org/10.5209/aguc.76727
Meyer, J.W., & Rowan, B. (1977). Institutionalized Organizations: Formal Structure as Myth and Ceremony. American Journal of Sociology, 83(2), 340-363. https://doi.org/doi/10.1086/226550
Micheels, E.T., & Nolan, J.F. (2016). Examining the effects of absorptive capacity and social capital on the adoption of agricultural innovations: A Canadian Prairie case study. Agricultural Systems, 145, 127-138. https://doi.org/10.1016/j.agsy.2016.03.010
Moghavvemi, S., & Salleh, N.A.M. (2014). Malaysian entrepreneurs propensity to use IT innovation. Journal of Enterprise Information Management, 27(2), 139-157. https://doi.org/10.1108/JEIM-05-2012-0026
Moglia, M., Alexander, K.S., Larson, S., Giger-Dray, A., Greenhalgh, G., Thammavong, P., & Case, P. (2020). Gendered roles in agrarian transition: A study of lowland rice farming in Lao PDR. Sustainability (Switzerland), 12(13). https://doi.org/10.3390/su12135403
Moglia, M., Podkalicka, A., & McGregor, J. (2018). An agent-based model of residential energy efficiency adoption. JASSS, 21(3). https://doi.org/10.18564/jasss.3729
Molina-Morales, F.X., & Martínez-Fernández, M.T. (2010). Social networks: Effects of social capital on firm innovation. Journal of Small Business Management, 48(2), 258-279. https://doi.org/10.1111/j.1540-627X.2010.00294.x
Morgan, K., & Murdoch, J. (2000). Organic vs. conventional agriculture: knowledge, power and innovation in the food chain. Geoforum, 31(2), 159-173. https://doi.org/10.1016/S0016-7185(99)00029-9
Nakagawa, S., Samarasinghe, G., Haddaway, N.R., Westgate, M.J., O’Dea, R.E., Noble, D.W.A., & Lagisz, M. (2019). Research Weaving: Visualizing the Future of Research Synthesis. Trends in Ecology & Evolution, 34(3), 224-238. https://doi.org/10.1016/J.TREE.2018.11.007
Nkamleu, G.B. (Ed.) (2010). Root causes of the food crisis: Technological progress and productivity growth in African agriculture. Nova Science Publishers, Inc.
Nkonya, E., Schroeder, T., & Norman, D. (1997). Factors affecting adoption of improved maize seed and fertiliser in Northern Tanzania. Journal of Agricultural Economics, 48(1), 1-12. https://doi.org/10.1111/j.1477-9552.1997.tb01126.x
O’Malley, A.J., & Marsden, P.V. (2008). The Analysis of Social Networks. Health Services & Outcomes Research Methodology, 8(4), 222-269. https://doi.org/10.1007/s10742-008-0041-z
Onwuegbuzie, A.J., & Frels, R. (2016). Seven steps to a comprehensive literature review: A multimodal and cultural approach. Sage.
Onyancha, O.B., & Onyango, E.A. (2020). Information and communication technologies for agriculture (ICT4Ag) in sub-saharan Africa: A bibliometrics perspective based on web of science data, 1991-2018. African Journal of Food, Agriculture, Nutrition and Development, 20(5), 16343-16370. https://doi.org/10.18697/AJFAND.93.19060
Ortiz, O., Orrego, R., Pradel, W., Gildemacher, P., Castillo, R., Otiniano, R., & Kahiu, I. (2013). Insights into potato innovation systems in Bolivia, Ethiopia, Peru and Uganda. Agricultural Systems, 114, 73-83. https://doi.org/10.1016/j.agsy.2012.08.007
Ozcelik, A.E. (2016). Driving initiatives for future improvements of specialty agricultural crops. Computers and Electronics in Agriculture, 121, 122-134. https://doi.org/10.1016/j.compag.2015.12.001
Pachoud, C., Labeyrie, V., & Polge, E. (2019). Collective action in Localized Agrifood Systems: An analysis by the social networks and the proximities. Study of a Serrano cheese producers’ association in the Campos de Cima da Serra/Brazil. Journal of Rural Studies, 72, 58-74. https://doi.org/10.1016/j.jrurstud.2019.10.003
Pathak, H.S., Brown, P., & Best, T. (2019). A systematic literature review of the factors affecting the precision agriculture adoption process. Precision Agriculture, 20(6), 1292-1316. https://doi.org/10.1007/s11119-019-09653-x
Petticrew, M., & Roberts, H. (2008). Systematic reviews in the social sciences: A practical guide. John Wiley & Sons.
Pillai, R., & Sivathanu, B. (2020). Adoption of internet of things (IoT) in the agriculture industry deploying the BRT framework. Benchmarking, 27(4), 1341-1368. https://doi.org/10.1108/BIJ-08-2019-0361
Prager, K., Creaney, R., & Lorenzo-Arribas, A. (2017). Criteria for a system level evaluation of farm advisory services. Land Use Policy, 61, 86-98. https://doi.org/10.1016/j.landusepol.2016.11.003
Ramstad, Y. (1990). The institutionalism of John R. Commons: theoretical foundations of a volitional economics. Research in the History of Economic Thought and Methodology, 8, 53-104.
Rejesus, R.M., & Jones, M.S. (2020). Perspective: enhancing economic evaluations and impacts of integrated pest management Farmer Field Schools (IPM-FFS) in low-income countries. Pest Management Science, 76(11), 3527-3536. https://doi.org/10.1002/ps.5912
Rogers, A. (1993). Adult education and agricultural extension: some comparisons. International Journal of Lifelong Education, 12(3), 165-176. https://doi.org/10.1080/0260137930120302
Rogers, E. M. (1962). Diffusion of innovations (1st ed.). The Free Press.
Rogers, E.M. (1983). Diffusion of innovations (3rd ed.). The Free Press.
Rogers, E.M. (1995). Diffusion of innovations (4th ed.). The Free Press.
Rogers, E.M. (2003). Diffusion of Innovations (5th ed.). The Free Press.
Roussy, C., Ridier, A., & Chaib, K. (2017). Farmers’ innovation adoption behaviour: Role of perceptions and preferences. International Journal of Agricultural Resources, Governance and Ecology, 13(2), 138-161. https://doi.org/10.1504/IJARGE.2017.086439
Ruttan, V.W. (1996). What happened to technology adoption-diffusion research? Sociologia Ruralis, 36(1), 51-73. https://doi.org/10.1111/j.1467-9523.1996.tb00004.x
Ryan, B., & Gross, N. (1950). Acceptance and diffusion of hybrid corn seed in two Iowa communities Acceptance and Diffusion of Hybrid Corn Seed in Two Iowa Communities, 29(372).
Ryan, B., & Gross, N.C. (1943). The Diffusion of Hybrid Seed Corn in Two Iowa Communities. Rural Sociology, 8(1), 15. https://search.proquest.com/docview/1291026197?accountid=14777
Saha, A., Love, H.A., & Schwart, R. (1994). Adoption of Emerging Technologies under Output Uncertainty. American Journal of Agricultural Economics, 76(4), 836-846. https://doi.org/10.2307/1243745
Sharifzadeh, M.S., Damalas, C.A., Abdollahzadeh, G., & Ahmadi-Gorgi, H. (2017). Predicting adoption of biological control among Iranian rice farmers: An application of the extended technology acceptance model (TAM2). Crop Protection, 96, 88-96. https://doi.org/10.1016/j.cropro.2017.01.014
Sharp, J.T., & Hinrichs, C.C. (2001). Farmer support for publicly funded sustainable agriculture research: The case of hoop structures for swine. American Journal of Alternative Agriculture, 16(2), 81-88. https://doi.org/10.1017/S0889189300008973
Shi, Y., Zeng, Y., Engo, J., Han, B., Li, Y., & Muehleisen, R.T. (2020). Leveraging inter-firm influence in the diffusion of energy efficiency technologies: An agent-based model. Applied Energy, 263. https://doi.org/10.1016/j.apenergy.2020.114641
Sneddon, J., Soutar, G., & Mazzarol, T. (2011). Modelling the faddish, fashionable and efficient diffusion of agricultural technologies: A case study of the diffusion of wool testing technology in Australia. Technological Forecasting and Social Change, 78(3), 468-480. https://doi.org/10.1016/j.techfore.2010.06.005
Souza, G.D., Cyphers, D., & Phipps, T. (1993). Factors Affecting the Adoption of Sustainable Agricultural Practices. Agricultural and Resource Economics Review, 22(2), 159-165. https://doi.org/10.1017/S1068280500004743
Spielman, D.J. (2005). Innovation systems perspectives on developing-country agriculture: a critical review. https://doi.org/10.22004/AG.ECON.59692
Spielman, D.J., Davis, K., Negash, M., & Ayele, G. (2011). Rural innovation systems and networks: findings from a study of Ethiopian smallholders. Agriculture and Human Values, 28(2), 195-212. https://doi.org/10.1007/s10460-010-9273-y
Stone, G.D., Flachs, A., & Diepenbrock, C. (2014). Rhythms of the herd: Long term dynamics in seed choice by Indian farmers. Technology in Society, 36(1), 26-38. https://doi.org/10.1016/j.techsoc.2013.10.003
Sultan, F., Farley, J.U., & Lehmann, D.R. (1990). A meta-analysis of applications of diffusion models. Journal of Marketing Research, 27(1), 70-77. https://doi.org/10.1177/002224379002700107
Tidd, J. (2001). Innovation management in context: environment, organization and performance. International Journal of Management Reviews, 3(3), 169-183. https://doi.org/10.1111/1468-2370.00062
Tveden-Nyborg, S., Misfeldt, M., & Boelt, B. (2013). Diffusing scientific knowledge to innovative experts. Journal of Science Communication, 12(1), 1824-2049. https://doi.org/10.22323/2.12010203
Usman, M., Hameed, G., Saboor, A., Almas, L.K., & Hanif, M. (2021). R&d innovation adoption, climatic sensitivity, and absorptive ability contribution for agriculture tfp growth in Pakistan. Agriculture (Switzerland), 11(12). https://doi.org/10.3390/agriculture11121206
Vagnani, G., Gatti, C., & Proietti, L. (2019). A conceptual framework of the adoption of innovations in organizations: a meta-analytical review of the literature. Journal of Management and Governance, 23(4), 1023-1062. https://doi.org/10.1007/s10997-019-09452-6
Valente, T.W. (2005). Network Models and Methods for Studying the Diffusion of Innovations. In P.J. Carrington, J. Scott & S. Wasserman (Eds.), Models and Methods in Social Network Analysis (pp. 98-116). Cambridge University Press. https://doi.org/10.1017/CBO9780511811395.006
Valente, T. W., Coronges, K., Lakon, C., & Costenbader, E. (2008). How Correlated Are Network Centrality Measures? Connections (Toronto, Ont.), 28(1), 16-26. https://pubmed.ncbi.nlm.nih.gov/20505784
Valente, T.W., & Rogers, E.M. (1995). The Origins and Development of the Diffusion of Innovations Paradigm as an Example of Scientific Growth. Science Communication, 16(3), 242-273. https://doi.org/10.1177/1075547095016003002
van Oorschot, J., Hofman, E., & Halman, J. (2018). A bibliometric review of the innovation adoption literature. Technological Forecasting and Social Change, 134, 1-21. https://doi.org/10.1016/j.techfore.2018.04.032
Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
Venkatesh, V., & Davis, F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Morris, M.G., Davis, G.B., & Davis, F.D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
Vidogbéna, F., Adégbidi, A., Tossou, R., Assogba-Komlan, F., Martin, T., Ngouajio, M., & Zander, K.K. (2016). Exploring factors that shape small-scale farmers’ opinions on the adoption of eco-friendly nets for vegetable production. Environment, Development and Sustainability, 18(6), 1749-1770. https://doi.org/10.1007/s10668-015-9717-z
Vollaro, M., Raggi, M., & Viaggi, D. (2019). Innovation adoption and farm profitability: What role for research and information sources? Bio-Based and Applied Economics, 8(2), 179-210. https://doi.org/10.13128/bae-8930
Waheed, R., Chang, D., Sarwar, S., & Chen, W. (2018). Forest, agriculture, renewable energy, and CO2 emission. Journal of Cleaner Production, 172, 4231-4238. https://doi.org/10.1016/j.jclepro.2017.10.287
Walder, P., Sinabell, F., Unterlass, F., Niedermayr, A., Fulgeanu, D., Kapfer, M., & Kantelhardt, J. (2019). Exploring the relationship between farmers’ innovativeness and their values and aims. Sustainability (Switzerland), 11(20). https://doi.org/10.3390/su11205571
Wang, Z., Liu, J., Li, T., Chao, J., & Gao, X. (2021). Factors Affecting New Agricultural Business Entities’ Adoption of Sustainable Intensification Practices in China: Evidence from the Main Apple-Producing Areas in the Loess Plateau. Agronomy, 11(12). https://doi.org/10.3390/agronomy11122435
Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press. https://books.google.es/books?id=CAm2DpIqRUIC
Wedajo, D.Y., Belissa, T.K., & Jilito, M.F. (2019). Harnessing indigenous social institutions for technology adoption: ‘Afoosha’ society of Ethiopia. Development Studies Research, 6(1), 152-162. https://doi.org/10.1080/21665095.2019.1678187
White, H.D., & Griffith, B.C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163-171. https://doi.org/10.1002/asi.4630320302
Witt, R., Pemsl, D.E., & Waibel, H. (2008). The farmer field school in senegal: Does training intensity affect diffusion of information? Journal of International Agricultural and Extension Education, 15(2), 47-60. https://doi.org/10.5191/jiaee.2008.15204
Wossen, T., Berger, T., & Di Falco, S. (2015). Social capital, risk preference and adoption of improved farm land management practices in Ethiopia. Agricultural Economics (United Kingdom), 46(1), 81-97. https://doi.org/10.1111/agec.12142
Wossink, G.A.A., De Buck, A.J., Van Niejenhuis, J.H., & Haverkamp, H.C.M. (1997). Farmer perceptions of weed control techniques in sugarbeet. Agricultural Systems, 55(3), 409-423. https://doi.org/10.1016/S0308-521X(96)00097-2
Wu, B., & Zhang, L. (2013). Farmer innovation diffusion via network building: A case of winter greenhouse diffusion in China. Agriculture and Human Values, 30(4), 641-651. https://doi.org/10.1007/s10460-013-9438-6
Yamoah, F.A., Kaba, J.S., Amankwah-Amoah, J., & Acquaye, A. (2020). Stakeholder Collaboration in Climate-Smart Agricultural Production Innovations: Insights from the Cocoa Industry in Ghana. Environmental Management, 66(4), 600-613. https://doi.org/10.1007/s00267-020-01327-z
Yifu, LJ. (1991). American journal of agricultural economics education and innovation adoption in agriculture: Evidence from hybrid rice in china. American Journal of Agricultural Economics, 73(3), 713-723. https://doi.org/10.2307/1242823
Yiridoe, E.K., Atari, D.O.A., Gordon, R., & Smale, S. (2010). Factors influencing participation in the Nova Scotia Environmental Farm Plan Program. Land Use Policy, 27(4), 1097-1106. https://doi.org/10.1016/j.landusepol.2010.02.006
Yosua, A., Chang, S., & Deguchi, H. (2019). Opinion leaders’ influence and innovations adoption between risk-averse and risk-taking farmers. International Journal of Agricultural Resources, Governance and Ecology, 15(2), 121-144. https://doi.org/10.1504/IJARGE.2019.102168
Young, H.P. (2009). Innovation diffusion in heterogeneous populations: Contagion, social influence, and social learning. American Economic Review, 99(5), 1899-1924. https://doi.org/10.1257/aer.99.5.1899
Zulfiqar, F., Datta, A., Tsusaka, T.W., & Yaseen, M. (2021). Micro-level quantification of determinants of eco-innovation adoption: An assessment of sustainable practices for cotton production in Pakistan. Sustainable Production and Consumption, 28, 436-444. https://doi.org/10.1016/j.spc.2021.06.014