Urban Growth Simulation with AMEBA: Agent-based Model to residential occupation
Main Article Content
Abstract
The implementation of Agent-Based Models (ABM) opens new possibilities to simulate, understand and analyse the processes derived from urban expansion. The AMEBA prototype (Agent-based Model for the Evolution of urBan Areas) aims to simulate this phenomenon by developing three independent sub-models, where planners, developers and the population interact. This article describes the structure and functioning of the population-driven residential occupation sub-model, as well as its integration with the others. Results show that an integrated architecture can be developed in order to better simulate these types of complex systems, and that it is flexible enough to be applied to alternative study areas and project different urban dynamics scenarios.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Acosta-Michlik, L., Rounsevell, M.D.A., Bakker, M., Van Doorn, A., Gómez Delgado, M., & Delgado, M. (2014). An agent-based assessment of land use and ecosystem changes in traditional agricultural landscape of Portugal. Intelligent Information Management, 6, 55-80. https://doi.org/10.4236/iim.2014.62008
Alghais, N., & Pullar, D. (2018). Modelling future impacts of urban development in Kuwait with the use of ABM and GIS. Transactions in GIS, 22(1), 20-42. https://doi.org/10.1111/tgis.12293
Alves, R., Da Silva Lima, R.; de Sena, D.C., de Pinho, A.F., & Holguín-Veras, J. (2019). Agent-based simulation model for evaluation urban freight policy to E-Commerce. Sustainability, 11, 4020. https://doi.org/10.3390/su11154020
Batty, M. (2016). 20 years of quantitative geographical thinking. Environment and Planning B: Planning and Design, 43(4), 605-609. https://doi.org/10.1177/0265813516655408
Barredo, J.I., Kasanko, M., McCormick, N., & Lavalle, C., (2003). Modelling dynamic spatial processes: simulation or urban future scenarios through cellular automata. Landscape and Urban Planning , 64(3), 145-160. https://doi.org/10.1016/S0169-2046(02)00218-9
Barros, J. (2012). Exploring urban dynamics in latin american cities using an agent-based simulation approach. In A. Heppenstall, A.T. Crooks, L.M. See & M. Batty (Eds.), Agent-Based Models of Geographical Systems (pp. 571–589). Dordrecht: Springer.
Berberoglu, A., Akim, A., & Clarke, K.C. (2016). Cellular automata modeling approaches to forecast urban growth for adana, Turkey: A comparative approach. Landscape and urban planning, 153, 11-27. https://doi.org/10.1016/j.landurbplan.2016.04.017
Bonabeau, E. (2002). Predicting the Unpredictable. Harvard Business Review, March Issue, 109-116.
Cantergiani, C.C. (2011). Modelos basados en agentes aplicados a estudios urbanos: una aproximación teórica. Serie Geográfica, 17, 29-43.
Cantergiani, C.C., & Gómez Delgado, M. (2016). Diseño de un modelo basado en agentes para simular el crecimiento urbano en el Corredor del Henares (Comunidad de Madrid). Boletín de la Asociación de Geógrafos Españoles, 70, 259-283. https://doi.org/10.21138/bage.2171
Cantergiani, C.C., & Gómez-Delgado, M. (2018). Urban land allocation model of territorial expansion by urban planners and housing development. Environments, 5(5). https://doi.org/10.3390/environments5010005
Crooks, A.T., Patel, A., & Wise, S. (2014). Multi-agent systems for urban planning. In N.N. Pinto, J.A.Tenedório, A.P. Antunes & J. Roca (Eds.), Technologies for Urban and Spatial Planning: Virtual Cities and Territories; (pp. 29-56). Hershey, PA, USA: IGI Global.
Dahal, K.R., & Chow, T.E. (2014). An agent-integrated irregular automata model of urban land-use dynamics. International Journal of Geographical Information Science, 28(11), 2281-2303. https://doi.org/10.1080/13658816.2014.917646
De Kok, J-L., Overloope, S., & Engelen, G. (2017). Screening models for integrated environmental planning – A feasibility study for Flanders. Futures, 88, 55-68. https://doi.org/10.1016/j.futures.2017.03.007
Fang C., & Yu, D. (2017). Urban agglomeration: An evolving concept of an emerging phenomenon. Landscape and urban planning, 162, 126-136. https://doi.org/10.1016/j.landurbplan.2017.02.014
Feitosa, F.F., Le, Q.B., & Vlek, P.L.G. (2011). Multi-agent simulator for urban segregation (MASUS): A tool to explore alternatives for promoting inclusive cities. Computers, Environment and Urban Systems, 35, 104–115. https://doi.org/10.1016/j.compenvurbsys.2010.06.001
Fernández Güell, J.M. (2011). Recuperación de los estudios del futuro a través de la prospectiva territorial. Ciudad y Territorio, XLIII(167), 11-32.
Filatova, T. (2015). Empirical agent-based land market: Integrating adaptive economic behavior in urban land-use models. Computers, Environment and Urban Systems, 54, 397–413. https://doi.org/10.1016/j.compenvurbsys.2014.06.007
Fontaine, C.M., & Rounsevell, M.D.A. (2009). An agent-based approach to model futures residential pressure on a regional landscape. Landscape Ecology, 24, 1237–1254. https://doi.org/10.1007/s10980-009-9378-0
Gallardo, M., & Martínez-Vega, J. (2016). Three decades of land-use changes in the region of madrid and how they relate to territorial planning. European Planning Studies, 24, 1016–1033. https://doi.org/10.1080/09654313.2016.1139059
Ghavami, S. M., Taleai, M., & Arentze, T. (2016). Socially rational agents in spatial landuse planning: A heuristic proposal based negotiation mechanism. Computers, Environment and Urban Systems, 60, 67-78. https://doi.org/10.1016/j.compenvurbsys.2016.08.004
Grimm, V., & Railsback, S.F. (Eds) (2005). Individual-based modeling and ecology. Princeton, NJ: Princeton University Press.
Groeneveld, J., Müller, B., Buchmann, C.M., Dressler, G., Guo C., Hase, N., ... Schwarz , N. (2017). Theoretical foundations of human decision-making in agent-based land use models - A review. Environmental modelling and Software, 87, 39-48. https://doi.org/10.1016/j.envsoft.2016.10.008
Guo, C., Buchmann, C.M., & Schwarz, N. (2017). Linking urban sprawl and income segregation- Findings from stylized agent-based model. Environment and Planning B: Urban analytics and city science, 46(3), 469-489. https://doi.org/10.1177/2399808317719072
Hackl, J., & Dubernet, T. (2019). Epidemic spreading in urban areas using agent-based transportation models. Future internet, 11, 92.
Hosseinali, F., Alesheikh, A.A., & Nourian, F. (2013). Agent-based modeling of urban land-use development, case study: Simulating future scenarios of Qazvin city. Cities, 31, 105-113. https://doi.org/10.1016/j.cities.2012.09.002
Jordan, R., Birkin, M., & Evans, A. (2012). A. Agent-based modeling of residential mobility, housing choice and regeneration. In A. Heppenstall, A.T. Crooks, L.M. See & M. Batty (Eds.), Agent-Based Models of Geographical Systems (pp. 511-524). Dordrecht: Springer.
Langlois, P. (2013). Simulation of complex systems in GIS. Londres, John Wiley & Sons
Ligmann-Zielinska, A., & Jankowski, P. (2010). Exploring normative scenarios of land use development decisions with an agent-based simulation laboratory. Computers, Environment and Urban Systems, 34, 409–423. https://doi.org/10.1016/j.cities.2012.09.002
Long Y., & Zhang, Y. (2015). Land-use pattern scenario analysis using planner agents. Environment and planning B: Planning and Design, 42, 615-637. https://doi.org/10.1068/b130012p
Magliocca, N., Safirova, E., Mcconnell, V., & Walls, M. (2011). An economic agent-based model of coupled housing and land markets (CHALMS). Computers, Environment and Urban Systems, 35, 83-191. https://doi.org/10.1016/j.compenvurbsys.2011.01.002
Malik, A., & Abdalla, R. (2017). Agent-based modelling for urban sprawl in the region of Waterloo, Ontario, Canada. Modeling Earth Systems and Environment, 3(7). https://doi.org/10.1007/s40808-017-0271-6
Mansury, Y. (2015). Bootom-up computational models or urban systems: In search of micro-fundations. Computers, Environment and Urban Systems, 54, 385-387. https://doi.org/10.1016/j.compenvurbsys.2015.10.006
Matthews, R.B., Gilbert, N.G., Roach, A., Polhill, J.G., & Gotts, N.M. (2007). Agent-based land-use models: a review of applications. Landscape Ecology, 22, 1447-1459. https://doi.org/10.1007/s10980-007-9135-1
Motieyan, H., & Mesgari, M.S. (2018). An agent-based modeling approach for sustainable urban planning from land use and public transit perspectives. Cities, 81, 91-100. https://doi.org/10.1016/j.cities.2018.03.018
Mustafa, A., Cools, M., Saadi, I., & Teller, J. (2017). Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM). Land Use Policy, 69, 529-540. https://doi.org/10.1016/j.landusepol.2017.10.009
Parker, D.C, Manson, S.M., Janssen, M.A., Hoffmann, M.J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the Association of American Geographers, 93(2), 314-337. https://doi.org/10.1111/1467-8306.9302004
Plata Rocha, W., Gómez Delgado, M., & Bosque Sendra, J. (2011). Simulation urban growth scenarios using gis and multicriteria evaluation techniques. Case study: Madrid region, Spain. Environment and Planning B: Planning and Design, 38, 1012–1031. https://doi.org/10.1068/b37061
Pumain, D., & Sanders, L. (2013). Theoretical principles in interurban simulation models: a comparison. Environment and Planning A: Economy and Space, 45, 2243-2260. https://doi.org/10.1068/a45620
Soria-Lara, J.A., Ariza-Álvarez, M.A., Aguilera-Benavente, F., Cascajo, R., Arce, R., López-García de Lenaiz, C., & Gómez-Delgado, M. (Final review). Participatory visioning for building disruptive future scenarios for transport and land use planning. Journal of Transport Geography.
Souza, L.C.G.D. (2005). O ensino da psicologia social e suas representações. A formação do saber o saber em formação. PHd, UFRJ. Retrieved from http://livros01.livrosgratis.com.br/cp023945.pdf
Sun, Z., Lorscheid, I., Millington, J.D., Lauf, S., Magliocca, N.R., Groeneveld, J., ... Buchmann, C.M. (2016). Simple or complicated agent-based models? A complicated issue. Environmental modelling and software, 86, 56-67. https://doi.org/10.1016/j.envsoft.2016.09.006
Tabernero, C., Hernández, B., Cuadrado, E., Luque, B., & Pereira, C.R. (2015). A multilevel perspective to explain recycling behaviour in communities. Journal of Environmental Management, 159, 192-201. https://doi.org/10.1016/j.jenvman.2015.05.024
Tan, R., Liu, Y., Zhou, K., Jiao, L. & Tang, W. (2015). A game-theory based agent-cellular model for use in urban growth simulation: A case study of the rapidly urbanizing Wuhan area of central China. Computers, environment and urban systems, 49, 15-29. https://doi.org/10.1016/j.compenvurbsys.2014.09.001
Tayyebi, A., Pijanowski, B. C., & Pekin, B. (2011). Two rule-based urban growth boundary models applied to the Tehran metropolitan area, Iran. Applied Geography, 31(3), 908–918. https://doi.org/10.1016/j.apgeog.2011.01.018
Tesfatsion, L., Rehmann, C.R., Cardoso, D.S., Jie, Y., & Gutowski, W.J. (2017). An agent-based platform for the study of watersheds as coupled natural and human systems. Environmental Modelling & Software, 89, 40-60. https://doi.org/10.1016/j.envsoft.2016.11.021
Torrens, P.M., & O’Sullivan, D. (2001). Cellular automata and urban simulation: where do we go from here? Environment and Planning B: Planning and Design, 28(2), 163-168. https://doi.org/10.1068/b2802ed
Torrens, P.M. (2012). Moving agent-pedestrians through space and time. Annals of the Association of American Geographers, 102(1), 35-66. https://doi.org/10.1080/00045608.2011.595658
Triantakonstantis, D., & Mountrakis, G. (2012). Urban growth prediction: A review of computational models and human perceptions. Journal of Geographical Information Systems, 4, 555-587. https://doi.org/10.4236/jgis.2012.46060
UN-HABITAT (2016). Urbanization and development: emerging futures. Nairobi, Kenia: World Cities report 2016.
Valenzuela Rubio, M. (2010). La planificación territorial de la región metropolitana de Madrid. Una asignatura pendiente. Cuadernos geográficos, 47(2), 95-129.
Valera, S., & Pol, E. (1994). El concepto de identidad social urbana: una aproximación entre la Psicología Social y la Psicología Ambiental. Anuario de Psicología, 62, 5-24.
Yang, Y., Mao, L., & Metcalf, S.S. (2019). Diffusion of hurricane evacuation behavior through a home-workplace social network: A spatially explicit agent-based simulation model. Computers, environment and urban systems, 74, 13-22. https://doi.org/10.1016/j.compenvurbsys.2018.11.010
Zhuge, C., Shao, C., Gao, J., Dong, C., & Zhang, H. (2016). Agent-based joint model of residential location choice and real estate price for land use and transport model. Computers, environment and urban systems, 57, 93-105. https://doi.org/10.1016/j.compenvurbsys.2016.02.001