Reliability of sealed surfaces detection using Copernicus data
Main Article Content
Abstract
Over the last 50 years there have been significant changes in land cover and land use, mainly those classified as artificial. This process, and its generalisation on a global scale, affect directly the basic functions of the soil, increasing other problems such as the loss of biodiversity, pollution, soil degradation, flooding and the effects of climate change. In the study area (Mazarrón, Region of Murcia) this problem is exemplary: the binomial urban development associated with the increase of beach tourism and intensive agriculture (under greenhouses) alter drastically the nature of the soil. The aim of this paper is twofold: to establish a supervised classification model that distinguishes, with an assumable error, the different classes established, highlighting those considered as sealed surfaces and, in addition, to make a comparison with the latest Corine Land Cover available information (2018). For this purpose, Sentinel 2A satellite images were selected and a maximum likelihood classification was performed. To validate the results, a confusion matrix was developed and an overall accuracy of 89% was obtained. Finally, a significantly underestimation by the Corine Land Cover of 75% of the sealed surfaces was observed, mainly due to its resolution.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Amro, I., Mateos, J., Vega, M., Molina, R., & Katsaggelos, A.K. (2011). A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP Journal on Advances in Signal Processing, 2011(1), 1-22. https://doi.org/10.1186/1687-6180-2011-79
Anderson, J.R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.
Araya, Y.H., & Cabral, P. (2010). Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sensing, 2(6), 1549-1563. https://doi.org/10.3390/rs2061549
Arnfield, A.J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology: a Journal of the Royal Meteorological Society, 23(1), 1-26. https://doi.org/10.1002/joc.859
Barreira González, P., González Cascon, V., & Bosque Sendra, J. (2012). Detección de errores temáticos en el CORINE Land Cover a través del estudio de cambios: Comunidad de Madrid (2000-2006). Estudios geográficos, 73(272), 7-34. https://doi.org/10.3989/estgeogr.201201
Borràs, J., Delegido, J., Pezzola, A., Pereira, M., Morassi, G., & Camps-Valls, G. (2017). Clasificación de usos del suelo a partir de imágenes Sentinel-2. Revista de Teledetección, (48), 55-66. https://doi.org/10.4995/raet.2017.7133
Bossard, M., Feranec, J., & Otahel, J. (2000). CORINE land cover technical guide: Addendum 2000, 40. Copenhagen: European Environment Agency. https://www.eea.europa.eu/publications/tech40add
Casciere, R., Franci, F., & Bitelli, G. (2014). Use of Landsat imagery to detect land cover changes for monitoring soil sealing; case study: Bologna province (Italy). Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014). https://doi.org/10.1117/12.2066432
Chen, L., Zhang, M., Zhu, J., Wang, Y., & Skorokhod, A. (2018). Modeling impacts of urbanization and urban heat island mitigation on boundary layer meteorology and air quality in Beijing under different weather conditions. Journal of Geophysical Research: Atmospheres, 123(8), 4323-4344. https://doi.org/10.1002/2017JD027501
Choudhury, D., Das, K., & Das, A. (2019). Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. The Egyptian Journal of Remote Sensing and Space Science, 22(2), 203-218. https://doi.org/10.1016/j.ejrs.2018.05.004
Congalton, R.G. (1988). A comparison of sampling schemes used in generating error matrices for assessing the accuracy of maps generated from remotely sensed data. Photogrammetric Engineering and Remote Sensing, 54(5), 593-600. https://scholars.unh.edu/faculty_pubs/1249/
Congalton, R.G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1), 35-46. https://doi.org/10.1016/0034-4257(91)90048-B
Crutzen, P.J. (2006). The “Anthropocene”. In Earth system science in the anthropocene (pp. 13-18). Springer. https://doi.org/10.1007/3-540-26590-2_3
Curtis, K., & Youngquist, S.T. (2013). Part 21: categoric analysis: Pearson chi-square test. Air medical journal, 32(4), 179-180, https://doi.org/10.1016/j.amj.2013.04.007
Deng, J.S., Wang, K., Hong, Y., & Qi, J.G. (2009). Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and urban planning, 92(3-4), 187-198. https://doi.org/10.1016/j.landurbplan.2009.05.001
Díaz-Pacheco, J., & Gutiérrez, J. (2014). Exploring the limitations of CORINE Land Cover for monitoring urban land-use dynamics in metropolitan areas. Journal of Land Use Science, 9(3), 243-259. https://doi.org/10.1080/1747423X.2012.761736
Duarte, C.M., Alonso, S., Benito, G., Dachs, J., Montes, C., Pardo Buendía, M., Ríos, A.F., Simó, Rafel & Valladares, F. (2006). Cambio Global. Impacto de la actividad humana sobre el sistema Tierra. CSIC. http://hdl.handle.net/10016/8520
EEA (1995). CORINE Land Cover. https://www.eea.europa.eu/publications/COR0-landcover
EEA (2010). The European environment — state and outlook 2010: soil. European Environment Agency. http://dx.doi.org/10.2800/58866
EEA (2012). The state of soil in Europe. A contribution of the JRC to the EEA Environment State and Outlook Report — SOER2010. European Environment Agency, Joint Research Centre. https://doi.org/10.2788/75626
EEA (2021). Copernicus Land Monitoring Service: CORINE Land Cover. User Manual. European Union. https://land.copernicus.eu/user-corner/technical-library/clc-product-user-manual
Erener, A. (2013). Classification method, spectral diversity, band combination and accuracy assessment evaluation for urban feature detection. International Journal of Applied Earth Observation and Geoinformation, 21, 397-408. https://doi.org/10.1016/j.jag.2011.12.008
European Space Agency (2015). Sentinel-2 User Handbook. https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
Ferreira, C.S., Seifollahi-Aghmiuni, S., Destouni, G., Ghajarnia, N., & Kalantari, Z. (2022). Soil degradation in the European Mediterranean region: Processes, status and consequences. Science of the Total Environment, 805, 150106. https://doi.org/10.1016/j.scitotenv.2021.150106
Foody, G.M. (2002). Status of land cover classification accuracy assessment. Remote sensing of environment, 80(1), 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4
Foody, G.M. (2005). Local characterization of thematic classification accuracy through spatially constrained confusion matrices. International Journal of Remote Sensing, 26(6), 1217-1228. https://doi.org/10.1080/01431160512331326521
Foody, G.M. (2008). Harshness in image classification accuracy assessment. International Journal of Remote Sensing, 29(11), 3137-3158. https://doi.org/10.1080/01431160701442120
Foody, G.M. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment, 239, 111630. https://doi.org/10.1016/j.rse.2019.111630
Fu, B., Meadows, M.E., & Zhao, W. (2021). Geography in the Anthropocene: Transforming our world for sustainable development. Geography and Sustainability, 3(1), 1-6. https://doi.org/10.1016/j.geosus.2021.12.004
García, P., & Pérez, E. (2016). Mapping of soil sealing by vegetation indexes and built-up index: A case study in Madrid (Spain). Geoderma, 268, 100-107. https://doi.org/10.1016/j.geoderma.2016.01.012
Gašparović, M., & Jogun, T. (2018). The effect of fusing Sentinel-2 bands on land-cover classification. International journal of remote sensing, 39(3), 822-841. https://doi.org/10.1080/01431161.2017.1392640
Goldewijk, K.K. (2001). Estimating global land use change over the past 300 years: the HYDE database. Global biogeochemical cycles, 15(2), 417-433. https://doi.org/10.1029/1999GB001232
Grullón, Y.R., Alhaddad, B., & Cladera, J.R. (2009, October). The analysis accuracy assessment of CORINE land cover in the Iberian coast. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IX (Vol. 7478, p. 74781N). International Society for Optics and Photonics. https://doi.org/10.1117/12.830121
Hansen, A. J., DeFries, R. S., & Turner, W. (2012). Land use change and biodiversity. In Land change science (pp. 277-299). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2562-4_16
Hooke, R.L., Martín Duque, J.F., & Pedraza Gilsanz, J.D. (2013). Land transformation by humans: a review. Ene, 12(43). https://eprints.ucm.es/id/eprint/20528/
Ibarra Marinas, D., Belmonte Serrato, F., & Rubio Iborra, J. (2017). El impacto territorial del uso agrícola y turístico del litoral: evolución de los cambios de uso del suelo en las cuencas litorales del sur de la Región de Murcia (1956-2013). Boletín de la Asociación de Geógrafos Españoles, (73). https://doi.org/10.21138/bage.2419
Illán-Fernández, E.J., Pérez-Morales, A., & Romero-Díaz, A. (2022). El sellado antropogénico del suelo. Análisis bibliométrico. Cuadernos Geográficos, 61(1), 107-128. https://doi.org/10.30827/cuadgeo.v61i1.22293
Jacobson, C.R. (2011). Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. Journal of environmental management, 92(6), 1438-1448. https://doi.org/10.1016/j.jenvman.2011.01.018
Lambin, E.F., & Geist, H.J. (Eds.). (2008). Land-use and land-cover change: local processes and global impacts. Springer Science & Business Media. https://doi.org/10.1007/3-540-32202-7
Lambin, E.F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences, 108(9), 3465-3472. https://doi.org/10.1073/pnas.1100480108
Landis, J.R., & Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310
Lark, R.M. (1995). Components of accuracy of maps with special reference to discriminant analysis on remote sensor data. International Journal of Remote Sensing, 16(8), 1461-1480. https://doi.org/10.1080/01431169508954488
Loncan, L., De Almeida, L.B., Bioucas-Dias, J.M., Briottet, X., Chanussot, J., Fabre, S., Liao, W., Licciardi, G.A., Simoes, M., Tourneret, J.-Y., Veganzones, M.A., Vivone, G., Wei, Q., & Yokoya, N. (2015). Hyperspectral pansharpening: A review. IEEE Geoscience and remote sensing magazine, 3(3), 27-46. https://doi.org/10.1109/MGRS.2015.2440094
Martín-Górriz, B., Gallego-Elvira, B., Martínez-Alvarez, V., & Maestre-Valero, J.F. (2020). Life cycle assessment of fruit and vegetable production in the Region of Murcia (south-east Spain) and evaluation of impact mitigation practices. Journal of Cleaner Production, 265, 121656. https://doi.org/10.1016/j.jclepro.2020.121656
McGrane, S.J. (2016). Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrological Sciences Journal, 61(13), 2295-2311. https://doi.org/10.1080/02626667.2015.1128084
McGwire K.C., & Fisher P. (2001). Spatially Variable Thematic Accuracy: Beyond the Confusion Matrix. In C.T. Hunsaker, M.F. Goodchild, M.A. Friedl & T.J. Case (Eds.), Spatial Uncertainty in Ecology. Springer. https://doi.org/10.1007/978-1-4613-0209-4_14
Meyer, W.B., & Turner, B.L. (1992). Human population growth and global land-use/cover change. Annual review of ecology and systematics, 23(1), 39-61. https://doi.org/10.1146/annurev.es.23.110192.000351
Meyer, W.B., & Turner, B.L. (1994). Changes in land use and land cover: a global perspective (Vol. 4). Cambridge University Press. https://doi.org/10.1002/ldr.3400060308
Miller, J.D., & Hutchins, M. (2017). The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, 12, 345-362. https://doi.org/10.1016/j.ejrh.2017.06.006
Mitsuda, Y., & Ito, S. (2011). A review of spatial-explicit factors determining spatial distribution of land use/land-use change. Landscape and Ecological Engineering, 7(1), 117-125. https://doi.org/10.1007/s11355-010-0113-4
Montanarella, L. (2007). Trends in land degradation in Europe. In Climate and land degradation (pp. 83-104). Springer. https://doi.org/10.1007/978-3-540-72438-4_5
Moore, A. (2016). Anthropocene anthropology: reconceptualizing contemporary global change. Journal of the Royal Anthropological Institute, 22(1), 27-46. https://doi.org/10.1111/1467-9655.12332
Naciones Unidas (2019). World Urbanization Prospects 2018: Highlights (ST/ESA/SER.A/421). Department of Economic and Social Affairs, Population Division. https://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf
Netzband, M., & Meinel, G. (1998). Identifying Urban Soil Sealing by High Resolution Remote Sensing Methods. In Urban Ecology (pp. 451-455). https://doi:10.1007/978-3-642-88583-9_91
Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., & Wulder, M.A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42-57. https://doi.org/10.1016/j.rse.2014.02.015
Pedraza, A.C., Díaz, A.R., & Soto, I.E. (2015). Cambios paisajísticos y efectos medioambientales debidos a la agricultura intensiva en la Comarca de Campo de Cartagena - Mar Menor (Murcia). Estudios geográficos, 76(279), 473-498. https://doi.org/10.3989/estgeogr.201517
Peduzzi, P. (2019). The disaster risk, global change, and sustainability nexus. Sustainability, 11(4), 957. https://doi.org/10.3390/su11040957
Pistocchi, A., Calzolari, C., Malucelli, F., & Ungaro, F. (2015). Soil sealing and flood risks in the plains of Emilia-Romagna, Italy. Journal of Hydrology: Regional Studies, 4, 398-409. https://doi.org/10.1016/j.ejrh.2015.06.021
Radoux, J., Bogaert, P., Fasbender, D., & Defourny, P. (2011). Thematic accuracy assessment of geographic object-based image classification. International Journal of Geographical Information Science, 25(6), 895-911. https://doi.org/10.1080/13658816.2010.498378
Rodríguez-Galiano, V.F., & Chica-Rivas, M. (2014). Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models. International Journal of Digital Earth, 7(6), 492-509. https://doi.org/10.1080/17538947.2012.748848
Rodríguez-Galiano, V., & Chica-Olmo, M. (2012). Land cover change analysis of a Mediterranean area in Spain using different sources of data: Multi-seasonal Landsat images, land surface temperature, digital terrain models and texture. Applied Geography, 35(1-2), 208-218. https://doi.org/10.1016/j.rse.2011.12.003
Romero Díaz, A., Caballero Pedraza, A., & Pérez Morales, A. (2017). Expansión urbana y turismo en la Comarca del Campo de Cartagena-Mar Menor (Murcia). Impacto en el sellado del suelo. Cuadernos de Turismo, (39), 521-546. https://doi.org/10.6018/turismo.39.290691
Rwanga, S.S., & Ndambuki, J.M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8(04), 611-622. https://doi.org/10.4236/ijg.2017.84033
Sage, R.F. (2020). Global change biology: A primer. Global Change Biology, 26(1), 3-30. https://doi.org/10.1111/gcb.14893
Sánchez Muñoz, J.M. (2016). Análisis de calidad cartográfica mediante el estudio de la matriz de confusión. Pensamiento Matemático, 6(2), 9-26. https://dialnet.unirioja.es/servlet/articulo?codigo=5998855
Sánchez-Picón, A., Aznar-Sánchez, J.A., & García-Latorre, J. (2011). Economic cycles and environmental crisis in arid southeastern Spain. A historical perspective. Journal of arid environments, 75(12), 1360-1367. https://doi.org/10.1016/j.jaridenv.2010.12.014
Scalenghe, R., & Marsan, F.A. (2009). The anthropogenic sealing of soils in urban areas. Landscape and urban planning, 90(1-2), 1-10. https://doi.org/10.1016/j.landurbplan.2008.10.011
Shuster, W.D., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D.R. (2005). Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2(4), 263-275. https://doi.org/10.1080/15730620500386529
Śleszyński, P., Gibas, P., & Sudra, P. (2020). The problem of mismatch between the CORINE Land Cover data classification and the development of settlement in Poland. Remote Sensing, 12(14), 2253. https://doi.org/10.3390/rs12142253
Smith, P., House, J.I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P.C., Clark, J.M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M.F., Elliott, J.A., McDowell, R., Griffiths, R.I., Asakawa, S., Bondeau, A., Jain, A.K., Meersmans, J., & Pugh, T.A.M. (2016). Global change pressures on soils from land use and management. Global change biology, 22(3), 1008-1028. https://doi.org/10.1111/gcb.13068
Song, X.P., Hansen, M.C., Stehman, S.V., Potapov, P.V., Tyukavina, A., Vermote, E.F., & Townshend, J.R. (2018). Global land change from 1982 to 2016. Nature, 560(7720), 639-643. https://doi.org/10.1038/s41586-018-0411-9
Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Bray, M., & Islam, T. (2012). Selection of classification techniques for land use/land cover change investigation. Advances in Space Research, 50(9), 1250-1265. https://doi.org/10.1016/j.asr.2012.06.032
Steffen, W., Grinevald, J., Crutzen, P., & McNeill, J. (2011). The Anthropocene: conceptual and historical perspectives. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1938), 842-867. https://doi.org/10.1098/rsta.2010.0327
Steffen, W., Sanderson, R.A., Tyson, P.D., Jäger, J., Matson, P.A., Moore III, B., Oldfield, F., Richardson, K., Schellnhuber, H.-J., Turner, B.L., & Wasson, R.J. (2006). Global change and the earth system: a planet under pressure. Springer Science & Business Media. https://doi.org/10.1007/b137870
Stehman, S.V. (2009). Sampling designs for accuracy assessment of land cover. International Journal of Remote Sensing, 30(20), 5243-5272. https://doi.org/10.1080/01431160903131000
Stehman, S.V., & Foody, G.M. (2019). Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment, 231, 111199. https://doi.org/10.1016/j.rse.2019.05.018
Strahler, A.H., Boschetti, L., Foody, G.M., Friedl, M. A., Hansen, M. C., Herold, M., Mayaux, P., Morisette, J.T., Stehman, S.V., & Woodcock, C.E. (2006). Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps (Report of Institute of Environmental Sustainability). Joint Research Centre, European Commission, Ispra. https://gofcgold.umd.edu/sites/default/files/docs/ReportSeries/GOLD_25.pdf
Thépaut, J.N., Dee, D., Engelen, R., & Pinty, B. (2018). The Copernicus programme and its climate change service. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 1591-1593). IEEE. 10.1109/IGARSS.2018.8518067
Thomlinson, J.R., Bolstad, P.V., & Cohen, W.B. (1999). Coordinating methodologies for scaling landcover classifications from site-specific to global: Steps toward validating global map products. Remote Sensing of Environment, 70(1), 16-28. https://doi.org/10.1016/S0034-4257(99)00055-3
Tombolini, I., Munafò, M., & Salvati, L. (2016). Soil sealing footprint as an indicator of dispersed urban growth: a multivariate statistics approach. Urban Research & Practice, 9(1), 1-15. https://doi.org/10.1080/17535069.2015.1037340
Torrellas, M., Antón, A., López, J.C., Baeza, E. J., Parra, J.P., Muñoz, P., & Montero, J.I. (2012). LCA of a tomato crop in a multi-tunnel greenhouse in Almeria. The International Journal of Life Cycle Assessment, 17(7), 863-875. https://doi.org/10.1007/s11367-012-0409-8
Unión Europea (2021). European Parliament resolution on soil protection (2021/2548(RSP), 28 April 2021, P9_TA(2021)0143. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021IP0143
Valera Lozano, A., Añó Vidal, C., & Sánchez Díaz, J. (2011). Crecimiento urbano (1956-2005) y sellado antropogénico del suelo en el municipio de Alacant. Serie Geográfica, (17), 97-108. https://digital.csic.es/handle/10261/43161
van Vliet, J., Bregt, A.K., & Hagen-Zanker, A. (2011). Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecological modelling, 222(8), 1367-1375. https://doi.org/10.1016/j.ecolmodel.2011.01.017
Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the kappa statistic. Fam med, 37(5), 360-363. http://www1.cs.columbia.edu/~julia/courses/CS6998/Interrater_agreement.Kappa_statistic.pdf
Vitousek, P.M., Mooney, H.A., Lubchenco, J., & Melillo, J.M. (1997). Human domination of Earth's ecosystems. Science, 277(5325), 494-499. https://doi.org/10.1126/science.277.5325.494
Wickham, J., Stehman, S.V., Gass, L., Dewitz, J.A., Sorenson, D.G., Granneman, B.J., Poss, R.V., & Baer, L.A. (2017). Thematic accuracy assessment of the 2011 national land cover database (NLCD). Remote Sensing of Environment, 191, 328-341. https://doi.org/10.1016/j.rse.2016.12.026
Xiao, R., Su, S., Zhang, Z., Qi, J., Jiang, D., & Wu, J. (2013). Dynamics of soil sealing and soil landscape patterns under rapid urbanization. Catena, 109, 1-12. https://doi.org/10.1016/j.catena.2013.05.004
Zhang, N., Gao, Z., Wang, X., & Chen, Y. (2010). Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theoretical and applied climatology, 102(3), 331-342. https://doi.org/10.1007/s00704-010-0263-1